Suppr超能文献

调整 CH-O 相互作用的能量分布可提高 RNA 发夹结构在 MD 模拟中的稳定性。

Adjusting the Energy Profile for CH-O Interactions Leads to Improved Stability of RNA Stem-Loop Structures in MD Simulations.

机构信息

Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States.

Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.

出版信息

J Phys Chem B. 2024 Aug 22;128(33):7921-7933. doi: 10.1021/acs.jpcb.4c01910. Epub 2024 Aug 7.

Abstract

The role of ribonucleic acid (RNA) in biology continues to grow, but insight into important aspects of RNA behavior is lacking, such as dynamic structural ensembles in different environments, how flexibility is coupled to function, and how function might be modulated by small molecule binding. In the case of proteins, much progress in these areas has been made by complementing experiments with atomistic simulations, but RNA simulation methods and force fields are less mature. It remains challenging to generate stable RNA simulations, even for small systems where well-defined, thermostable structures have been established by experiments. Many different aspects of RNA energetics have been adjusted in force fields, seeking improvements that are transferable across a variety of RNA structural motifs. In this work, the role of weak CH···O interactions is explored, which are ubiquitous in RNA structure but have received less attention in RNA force field development. By comparing data extracted from high-resolution RNA crystal structures to energy profiles from quantum mechanics and force field calculations, it is shown that CH···O interactions are overly repulsive in the widely used Amber RNA force fields. A simple, targeted adjustment of CH···O repulsion that leaves the remainder of the force field unchanged was developed. Then, the standard and modified force fields were tested using molecular dynamics (MD) simulations with explicit water and salt, amassing over 300 μs of data for multiple RNA systems containing important features such as the presence of loops, base stacking interactions as well as canonical and noncanonical base pairing. In this work and others, standard force fields lead to reproducible unfolding of the NMR-based structures. Including a targeted CH···O adjustment in an otherwise identical protocol dramatically improves the outcome, leading to stable simulations for all RNA systems tested.

摘要

核糖核酸 (RNA) 在生物学中的作用不断发展,但人们对 RNA 行为的重要方面缺乏了解,例如不同环境中的动态结构集合、柔韧性如何与功能相关联以及功能如何被小分子结合所调节。在蛋白质方面,通过将实验与原子模拟相结合,在这些方面取得了很大进展,但 RNA 模拟方法和力场还不够成熟。即使对于通过实验确定了明确的热稳定结构的小系统,也很难生成稳定的 RNA 模拟,这仍然是一个挑战。在力场中已经调整了 RNA 能量学的许多不同方面,以寻求在各种 RNA 结构基序中具有可转移性的改进。在这项工作中,探索了普遍存在于 RNA 结构中的弱 CH···O 相互作用的作用,这些相互作用在 RNA 力场发展中受到的关注较少。通过将从高分辨率 RNA 晶体结构中提取的数据与量子力学和力场计算的能量曲线进行比较,表明 CH···O 相互作用在广泛使用的 Amber RNA 力场中过于排斥。开发了一种简单的、有针对性的 CH···O 排斥调整,而不改变力场的其余部分。然后,使用包含环、碱基堆积相互作用以及规范和非规范碱基配对等重要特征的多个 RNA 系统的分子动力学 (MD) 模拟测试了标准和修改后的力场,总共积累了超过 300 μs 的数据。在这项工作和其他工作中,标准力场导致基于 NMR 的结构可重复展开。在其他方面相同的方案中包含有针对性的 CH···O 调整可显著改善结果,从而为所有测试的 RNA 系统实现稳定的模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验