Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America.
Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, United States of America.
PLoS One. 2024 Aug 7;19(8):e0308207. doi: 10.1371/journal.pone.0308207. eCollection 2024.
Neurofibromatosis Type 1 (NF1) is a complex genetic disorder characterized by the development of benign neurofibromas, which can cause significant morbidity in affected individuals. While the molecular mechanisms underlying NF1 pathogenesis have been extensively studied, the development of effective therapeutic strategies remains a challenge. This paper presents the development and validation of a novel biomaterial testing model to enhance our understanding of NF1 pathophysiology, disease mechanisms and evaluate potential therapeutic interventions. Our long-term goal is to develop an invitro model of NF1 to evaluate drug targets. We have developed an in vitro system to test the cellular behavior of NF1 patient derived cells on electroconductive aligned nanofibrous biomaterials with electrical stimulatory cues. We hypothesized that cells cultured on electroconductive biomaterial will undergo morphological changes and variations in cell proliferation that could be further enhanced with the combination of exogenous electrical stimulation (ES). In this study, we developed electrospun Hyaluronic Acid-Carbon Nanotube (HA-CNT) nanofiber scaffolds to mimic the axon's topographical and bioelectrical cues that influence neurofibroma growth and development. The cellular behavior was qualitatively and quantitively analyzed through immunofluorescent stains, Alamar blue assays and ELISA assays. Schwann cells from NF1 patients appear to have lost their ability to respond to electrical stimulation in the development and regeneration range, which was seen through changes in morphology, proliferation and NGF release. Without stimulation, the conductive material enhances NF1 SC behavior. Wild-type SC respond to electrical stimulation with increased cell proliferation and NGF release. Using this system, we can better understand the interaction between axons and SC that lead to tumor formation, homeostasis and regeneration.
神经纤维瘤病 1 型(NF1)是一种复杂的遗传疾病,其特征是良性神经纤维瘤的发展,这可能会导致受影响个体的发病率显著增加。虽然 NF1 发病机制的分子机制已经得到了广泛的研究,但开发有效的治疗策略仍然是一个挑战。本文介绍了一种新型生物材料测试模型的开发和验证,旨在增强我们对 NF1 病理生理学、疾病机制的理解,并评估潜在的治疗干预措施。我们的长期目标是开发一种 NF1 的体外模型,以评估药物靶点。我们已经开发了一种体外系统,用于测试 NF1 患者来源细胞在具有电刺激线索的导电对齐纳米纤维生物材料上的细胞行为。我们假设,在导电生物材料上培养的细胞将经历形态变化和细胞增殖的变化,而外加电刺激(ES)的组合可以进一步增强这些变化。在这项研究中,我们开发了电纺透明质酸-碳纳米管(HA-CNT)纳米纤维支架,以模拟影响神经纤维瘤生长和发育的轴突的地形和生物电学线索。通过免疫荧光染色、Alamar blue 测定和 ELISA 测定对细胞行为进行定性和定量分析。来自 NF1 患者的雪旺细胞似乎已经失去了对电刺激的反应能力,这种能力在发育和再生范围内都可见,表现为形态、增殖和 NGF 释放的变化。在没有刺激的情况下,导电材料增强了 NF1 SC 的行为。野生型 SC 对电刺激的反应是增殖和 NGF 释放增加。使用该系统,我们可以更好地理解导致肿瘤形成、动态平衡和再生的轴突和 SC 之间的相互作用。