Suppr超能文献

用于探索多样且一致信息的非对称双翼多视图聚类网络。

Asymmetric double-winged multi-view clustering network for exploring diverse and consistent information.

机构信息

School of Earth and Space Sciences, CMA-USTC Laboratory of Fengyun Remote Sensing, University of Science and Technology of China, Hefei 230026, China.

College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China.

出版信息

Neural Netw. 2024 Nov;179:106563. doi: 10.1016/j.neunet.2024.106563. Epub 2024 Jul 22.

Abstract

In unsupervised scenarios, deep contrastive multi-view clustering (DCMVC) is becoming a hot research spot, which aims to mine the potential relationships between different views. Most existing DCMVC algorithms focus on exploring the consistency information for the deep semantic features, while ignoring the diverse information on shallow features. To fill this gap, we propose a novel multi-view clustering network termed CodingNet to explore the diverse and consistent information simultaneously in this paper. Specifically, instead of utilizing the conventional auto-encoder, we design an asymmetric structure network to extract shallow and deep features separately. Then, by approximating the similarity matrix on the shallow feature to the zero matrix, we ensure the diversity for the shallow features, thus offering a better description of multi-view data. Moreover, we propose a dual contrastive mechanism that maintains consistency for deep features at both view-feature and pseudo-label levels. Our framework's efficacy is validated through extensive experiments on six widely used benchmark datasets, outperforming most state-of-the-art multi-view clustering algorithms.

摘要

在无监督场景下,深度对比多视图聚类(DCMVC)正成为一个热门研究领域,旨在挖掘不同视图之间的潜在关系。大多数现有的 DCMVC 算法都侧重于探索深度语义特征的一致性信息,而忽略了浅层特征的多样化信息。为了弥补这一差距,我们提出了一种名为 CodingNet 的新型多视图聚类网络,旨在同时探索多样化和一致性信息。具体来说,我们设计了一个非对称结构的网络来分别提取浅层和深层特征,而不是使用传统的自动编码器。然后,通过将浅层特征上的相似性矩阵近似为零矩阵,我们确保了浅层特征的多样性,从而更好地描述了多视图数据。此外,我们提出了一种双重对比机制,在视图特征和伪标签级别上保持了深层特征的一致性。我们的框架在六个广泛使用的基准数据集上进行了大量实验,验证了其有效性,优于大多数最先进的多视图聚类算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验