Suppr超能文献

用于半监督 3D MRI 图像分割的恒优化平均教师。

Constantly optimized mean teacher for semi-supervised 3D MRI image segmentation.

机构信息

School of Computer Science and Technology, Laboratory for Brain Science and Medical Artificial Intelligence, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.

NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, People's Republic of China.

出版信息

Med Biol Eng Comput. 2024 Jul;62(7):2231-2245. doi: 10.1007/s11517-024-03061-8. Epub 2024 Mar 22.

Abstract

The mean teacher model and its variants, as important methods in semi-supervised learning, have demonstrated promising performance in magnetic resonance imaging (MRI) data segmentation. However, the superior performance of teacher model through exponential moving average (EMA) is limited by the unreliability of unlabeled image, resulting in potentially unreliable predictions. In this paper, we propose a framework to optimized the teacher model with reliable expert-annotated data while preserving the advantages of EMA. To avoid the tight coupling that results from EMA, we leverage data augmentations to provide two distinct perspectives for the teacher and student models. The teacher model adopts weak data augmentation to provide supervision for the student model and optimizes itself with real annotations, while the student uses strong data augmentation to avoid overfitting on noise information. In addition, double softmax helps the model resist noise and continue learning meaningful information from the images, which is a key component in the proposed model. Extensive experiments show that the proposed method exhibits competitive performance on the Left Atrium segmentation MRI dataset (LA) and the Brain Tumor Segmentation MRI dataset (BraTS2019). For the LA dataset, we achieved a dice of 91.02% using only 20% labeled data, which is close to the dice of 91.14% obtained by the supervised approach using 100% labeled data. For the BraTs2019 dataset, the proposed method achieved 1.02% and 1.92% improvement on 5% and 10% labeled data, respectively, compared to the best baseline method on this dataset. This study demonstrates that the proposed model can be a potential candidate for medical image segmentation in semi-supervised learning scenario.

摘要

均值教师模型及其变体作为半监督学习中的重要方法,在磁共振成像 (MRI) 数据分割中表现出了很有前景的性能。然而,通过指数移动平均 (EMA) 的教师模型的优越性能受到未标记图像不可靠性的限制,导致潜在的不可靠预测。在本文中,我们提出了一种利用可靠的专家标注数据优化教师模型的框架,同时保留 EMA 的优势。为了避免 EMA 导致的紧密耦合,我们利用数据增强为教师模型和学生模型提供了两个不同的视角。教师模型采用弱数据增强为学生模型提供监督,并利用真实标注来优化自身,而学生模型则采用强数据增强来避免对噪声信息的过度拟合。此外,双软最大有助于模型抵抗噪声并继续从图像中学习有意义的信息,这是所提出模型的关键组成部分。广泛的实验表明,所提出的方法在左心房分割 MRI 数据集 (LA) 和脑肿瘤分割 MRI 数据集 (BraTS2019) 上表现出了竞争性能。对于 LA 数据集,我们仅使用 20%的标记数据就达到了 91.02%的骰子分数,接近使用 100%标记数据的监督方法获得的 91.14%的骰子分数。对于 BraTs2019 数据集,与该数据集上的最佳基线方法相比,所提出的方法在 5%和 10%的标记数据上分别提高了 1.02%和 1.92%。本研究表明,所提出的模型可以成为半监督学习场景中医学图像分割的潜在候选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验