Fernández-García Esperanza, Merino Pablo, González-Rodríguez Nerea, Martínez Lidia, Pozo María Del, Prieto Javier, Blanco Elías, Santoro Gonzalo, Quintana Carmen, Petit-Domínguez María Dolores, Casero Elena, Vázquez Luis, Martínez José I, Martín-Gago José A
Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/Francisco Tomás y Valiente, Campus de Excelencia de la Universidad Autónoma de Madrid, Madrid 28049, Spain.
Instituto de Ciencia de Materiales de Madrid ICMM (CSIC), Madrid E-28049, Spain.
ACS Catal. 2024 Jul 19;14(15):11522-11531. doi: 10.1021/acscatal.3c05897. eCollection 2024 Aug 2.
The influence of surface morphology and the oxidation state on the electrocatalytic activity of nanostructured electrodes is well recognized, yet disentangling their individual roles in specific reactions remains challenging. Here, we investigated the electrooxidation of sulfite ions in an alkaline environment using cyclic voltammetry on copper oxide nanostructured electrodes with different oxidation states and morphologies but with similar active areas. To this aim, we synthesized nanostructured Cu films made of nanoparticles or nanorods on top of glassy carbon electrodes. Our findings showed an enhanced sensitivity and a lower detection threshold when utilizing Cu(I) over Cu(II). Density functional theory-based thermochemical analysis revealed the underlying oxidation mechanism, indicating that while the energy gain associated with the process is comparable for both oxide surfaces, the desorption energy barrier for the resulting sulfate molecules is three times higher on Cu(II). This becomes the limiting step of the reaction kinetics and diminishes the overall electrooxidation efficiency. Our proposed mechanism relies on the tautomerization of hydroxyl groups confined on the surface of Cu-based electrodes. This mechanism might be applicable to electrochemical reactions involving other sulfur compounds that hold technological significance.
表面形态和氧化态对纳米结构电极的电催化活性的影响已得到充分认识,但要厘清它们在特定反应中的各自作用仍具有挑战性。在此,我们使用循环伏安法,在具有不同氧化态和形态但活性面积相似的氧化铜纳米结构电极上,研究了碱性环境中亚硫酸根离子的电氧化。为此,我们在玻碳电极顶部合成了由纳米颗粒或纳米棒制成的纳米结构铜膜。我们的研究结果表明,与Cu(II)相比,使用Cu(I)时灵敏度更高,检测阈值更低。基于密度泛函理论的热化学分析揭示了潜在的氧化机制,表明虽然与该过程相关的能量增益对于两种氧化物表面而言相当,但生成的硫酸根分子在Cu(II)上的解吸能垒高出三倍。这成为反应动力学的限制步骤,并降低了整体电氧化效率。我们提出的机制依赖于限制在铜基电极表面的羟基的互变异构。该机制可能适用于涉及其他具有技术意义的硫化合物的电化学反应。