Pilati Vanessa, Salvador María, Fraile Leyre Bei, Marqués-Fernández José Luis, Gomes da Silva Franciscarlos, Fadel Mona, Antón Ricardo López, Morales María Del Puerto, Martinez-García José Carlos, Rivas Montserrat
Departamento de Física, Campus de Viesques, Universidad de Oviedo Gijón 33204 Spain
Complex Fluids Group, Instituto de Física & Faculdade UnB - Planaltina, Universidade de Brasília Brasília 70910-900 Brazil.
Nanoscale Adv. 2024 Jul 8;6(16):4247-4258. doi: 10.1039/d4na00445k. eCollection 2024 Aug 6.
Lateral flow assays are low-cost point-of-care devices that are stable, easy to use, and provide quick results. They are mostly used as qualitative screening tests to detect biomarkers for several diseases. Quantification of the biomarkers is sometimes desirable but challenging to achieve. Magnetic nanoparticles can be used as tags, providing both visual and magnetic signals that can be detected and quantified by magnetic sensors. In the present work, we synthesized superparamagnetic MnFeO nanoparticles using the hydrothermal coprecipitation route. MnFeO presents low magnetic anisotropy and high saturation magnetization, resulting in larger initial magnetic susceptibility, which is crucial for optimizing the signal in inductive sensors. We functionalized the coprecipitated nanoparticles with citric acid to achieve colloidal stability in a neutral pH and to provide carboxyl groups to their surface to bioconjugate with biomolecules, such as proteins and antibodies. The nanomaterials were characterized by several techniques, and we correlated their magnetic properties with their sensitivity and resolution for magnetic detection in radiofrequency inductive sensors. We considered the NeutrAvidin/biotin model of biorecognition to explore their potential as magnetic labels in lateral flow assays. Our results show that MnFeO nanoparticles are more sensitive to inductive detection than magnetite nanoparticles, the most used nanotags in magnetic lateral flow assays. These nanoparticles present high potential as magnetic tags for the development of sensitive lateral flow immunoassays for detecting and quantifying biomarkers.
侧向流动分析是低成本的即时检测设备,它们稳定、易于使用且能快速给出结果。它们大多用作定性筛查测试,以检测多种疾病的生物标志物。有时需要对生物标志物进行定量,但实现起来具有挑战性。磁性纳米颗粒可用作标签,提供可被磁传感器检测和定量的视觉和磁信号。在本工作中,我们采用水热共沉淀法合成了超顺磁性MnFeO纳米颗粒。MnFeO具有低磁各向异性和高饱和磁化强度,导致更大的初始磁化率,这对于优化电感式传感器中的信号至关重要。我们用柠檬酸对共沉淀的纳米颗粒进行功能化,以在中性pH值下实现胶体稳定性,并在其表面提供羧基,以便与生物分子(如蛋白质和抗体)进行生物共轭。通过多种技术对这些纳米材料进行了表征,并且我们将它们的磁性与其在射频电感式传感器中的磁检测灵敏度和分辨率相关联。我们考虑了生物识别的中性抗生物素蛋白/生物素模型,以探索它们作为侧向流动分析中磁性标签的潜力。我们的结果表明,MnFeO纳米颗粒比磁铁矿纳米颗粒对电感检测更敏感,磁铁矿纳米颗粒是磁性侧向流动分析中最常用的纳米标签。这些纳米颗粒作为磁性标签具有很高的潜力,可用于开发用于检测和定量生物标志物的灵敏侧向流动免疫分析。
Biosensors (Basel). 2020-7-22
Nanomaterials (Basel). 2020-11-20
Sensors (Basel). 2019-12-10
Bioprocess Biosyst Eng. 2024-11
Materials (Basel). 2023-6-8
Analyst. 2023-7-26
Nanoscale Adv. 2021-10-4
Nanomaterials (Basel). 2022-1-8