Gui Qiuyue, Cui Wenjun, Ba Deliang, Sang Xiahan, Li Yuanyuan, Liu Jinping
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
Nanostructure Research Center, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
Angew Chem Int Ed Engl. 2024 Sep 16;63(38):e202409098. doi: 10.1002/anie.202409098. Epub 2024 Aug 8.
Conversion-type anode materials with high theoretical capacities play a pivotal role in developing future aqueous rechargeable batteries (ARBs). However, their sustainable applications have long been impeded by the poor cycling stability and sluggish redox kinetics. Here we show that confining conversion chemistry in intercalation host could overcome the above challenges. Using sodium titanates as a model intercalation host, an integrated layered anode material of iron oxide hydroxide-pillared titanate (FeNTO) is demonstrated. The conversion reaction is spatially and kinetically confined within sub-nano interlayer, enabling superlow redox polarization (ca. 4-6 times reduced), ultralong lifespan (up to 8700 cycles) and excellent rate performance. Notably, the charge compensation of interlayer via universal cation intercalation into host endows FeNTO with the capability of operating well in a broad range of aqueous electrolytes (Li, Na, K, Mg, Ca, etc.). We further demonstrate the large-scale synthesis of FeNTO thin film and powder, and rational design of quasi-solid-state high-voltage ARB pouch cells powering wearable electronics against extreme mechanical abuse. This work demonstrates a powerful confinement means to access disruptive electrode materials for next-generation energy devices.
具有高理论容量的转换型负极材料在未来水系可充电电池(ARB)的发展中起着关键作用。然而,其可持续应用长期以来一直受到循环稳定性差和氧化还原动力学迟缓的阻碍。在此,我们表明将转换化学限制在插层主体中可以克服上述挑战。以钛酸钠作为模型插层主体,展示了一种集成的层状负极材料——氢氧化铁柱撑钛酸盐(FeNTO)。转换反应在空间和动力学上被限制在亚纳米层间内,实现了超低的氧化还原极化(降低约4 - 6倍)、超长的寿命(高达8700次循环)以及优异的倍率性能。值得注意的是,通过通用阳离子插入主体层间进行电荷补偿,使FeNTO能够在广泛的水系电解质(锂、钠、钾、镁、钙等)中良好运行。我们进一步展示了FeNTO薄膜和粉末的大规模合成,以及用于为可穿戴电子设备供电的准固态高压ARB软包电池的合理设计,该电池能抵御极端机械滥用。这项工作展示了一种强大的限制手段,可用于获得用于下一代能量装置的颠覆性电极材料。