Suppr超能文献

如何区分玻璃形成材料等温结构弛豫中的非指数性和非线性

How to Distinguish Nonexponentiality and Nonlinearity in Isothermal Structural Relaxation of Glass-Forming Materials.

作者信息

Málek Jiří

机构信息

Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic.

出版信息

J Phys Chem B. 2024 Aug 22;128(33):8074-8083. doi: 10.1021/acs.jpcb.4c02226. Epub 2024 Aug 8.

Abstract

The nonexponentiality and nonlinearity are two essential features of the structural relaxation in any glass-forming material, which seem to be inextricably bound together by the material time. It is shown that the temperature down-jump and up-jump experiments of the same magnitude Δ = - to the same temperature provide a clue for their separation. The isothermal structural relaxation can be quantified using the stabilization period on the logarithmic time scale log(/). It is described as the sum of the nonexponentiality term 1.181/ß and the nonlinearity term (σ/2.303)Δ for the temperature down-jump, and as their difference for the temperature up-jump. The material parameter σ = -(∂lnτ/∂) quantifies variation of the relaxation time with structural changes at the inflection point of the relaxation curve and is formulated for the most widely used phenomenological models. The asymmetry of approach to equilibrium after the temperature down-jump and up-jump was first described by Kovacs in 1963. A detailed analysis of this asymmetry is provided, and a simple method for the estimation of the parameters characterizing the nonexponentiality (ß) and nonlinearity (σ) is proposed. The applicability of this method is tested using previously reported isothermal experimental data as well as calculated data for aging of polymers and other glass-forming materials. This concept illuminates differences in structural relaxation kinetics in a simple and consistent way that can be useful in the design of novel materials and the evaluation of their physical aging treatment.

摘要

非指数性和非线性是任何玻璃形成材料结构弛豫的两个基本特征,它们似乎通过材料时间紧密相连。结果表明,对相同温度进行相同幅度Δ = - 的温度下降和上升实验为它们的分离提供了线索。等温结构弛豫可以使用对数时间尺度log(/)上的稳定期来量化。对于温度下降,它被描述为非指数项1.181/ß与非线性项(σ/2.303)Δ之和;对于温度上升,则为它们的差值。材料参数σ = -(∂lnτ/∂)量化了弛豫曲线拐点处弛豫时间随结构变化的情况,并针对最常用的唯象模型进行了公式化。温度下降和上升后接近平衡的不对称性最早由科瓦奇在1963年描述。本文提供了对这种不对称性的详细分析,并提出了一种估计表征非指数性(ß)和非线性(σ)参数的简单方法。使用先前报道的等温实验数据以及聚合物和其他玻璃形成材料老化的计算数据对该方法的适用性进行了测试。这一概念以一种简单且一致的方式阐明了结构弛豫动力学的差异,这对于新型材料的设计及其物理老化处理的评估可能是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2211/11345833/5107d20acc5f/jp4c02226_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验