Department of Computer Science, University of Colorado, Boulder, Colorado.
Department of Biostatistics and Informatics, Colorado School of Public Health, The University of Colorado Anschutz Medical Campus, Aurora, Colorado.
Cancer Immunol Res. 2024 Nov 4;12(11):1492-1507. doi: 10.1158/2326-6066.CIR-23-1109.
Ovarian cancer is the deadliest gynecologic malignancy, and therapeutic options and mortality rates over the last three decades have largely not changed. Recent studies indicate that the composition of the tumor immune microenvironment (TIME) influences patient outcomes. To improve spatial understanding of the TIME, we performed multiplexed ion beam imaging on 83 human high-grade serous carcinoma tumor samples, identifying approximately 160,000 cells across 23 cell types. From the 77 of these samples that met inclusion criteria, we generated composition features based on cell type proportions, spatial features based on the distances between cell types, and spatial network features representing cell interactions and cell clustering patterns, which we linked to traditional clinical and IHC variables and patient overall survival (OS) and progression-free survival (PFS) outcomes. Among these features, we found several significant univariate correlations, including B-cell contact with M1 macrophages (OS HR = 0.696; P = 0.011; PFS HR = 0.734; P = 0.039). We then used high-dimensional random forest models to evaluate out-of-sample predictive performance for OS and PFS outcomes and to derive relative feature importance scores for each feature. The top model for predicting low or high PFS used TIME composition and spatial features and achieved an average AUC score of 0.71. The results demonstrate the importance of spatial structure in understanding how the TIME contributes to treatment outcomes. Furthermore, the present study provides a generalizable roadmap for spatial analyses of the TIME in ovarian cancer research.
卵巢癌是致命的妇科恶性肿瘤,在过去三十年中,治疗选择和死亡率基本没有改变。最近的研究表明,肿瘤免疫微环境(TIME)的组成影响患者的预后。为了提高对 TIME 的空间理解,我们对 83 个人类高级别浆液性癌肿瘤样本进行了多重离子束成像,鉴定了大约 160000 个细胞,涉及 23 种细胞类型。在符合纳入标准的 77 个样本中,我们根据细胞类型比例生成组成特征,根据细胞类型之间的距离生成空间特征,以及代表细胞相互作用和细胞聚类模式的空间网络特征,并将这些特征与传统的临床和免疫组化变量以及患者总生存(OS)和无进展生存(PFS)结果联系起来。在这些特征中,我们发现了几个具有显著意义的单变量相关性,包括 B 细胞与 M1 巨噬细胞的接触(OS HR = 0.696;P = 0.011;PFS HR = 0.734;P = 0.039)。然后,我们使用高维随机森林模型来评估 OS 和 PFS 结果的样本外预测性能,并为每个特征得出相对特征重要性评分。用于预测低或高 PFS 的顶级模型使用了 TIME 的组成和空间特征,平均 AUC 评分为 0.71。结果表明空间结构在理解 TIME 如何影响治疗结果方面的重要性。此外,本研究为卵巢癌研究中 TIME 的空间分析提供了一个可推广的路线图。