Suppr超能文献

卢立康唑纳米纤维用于局部霉菌病的长效保留:开发、体外表征及对白色念珠菌的抗真菌活性

Prolonged retention of luliconazole nanofibers for topical mycotic condition: development, in vitro characterization and antifungal activity against Candida albicans.

作者信息

Doshi Akashkumar, Prabhakar Bala, Wairkar Sarika

机构信息

Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, Maharashtra, India.

出版信息

J Mater Sci Mater Med. 2024 Aug 8;35(1):46. doi: 10.1007/s10856-024-06815-w.

Abstract

An antifungal agent, luliconazole, is commercially available in cream or gel form. The major limitation of these conventional formulations is less residence time at the infection site. The primary objective of this work was to develop luliconazole-loaded polyvinyl alcohol (Luz-PVA) nanofibers for mycotic skin conditions with a longer retention. Luz-PVA nanofibers were prepared by plate electrospinning and optimized for polymer concentration and process parameters. The optimized batch (Trial 5) was prepared by 10% PVA, processed at 22.4 kV applied voltage, and 14 cm plate and spinneret distance to yield thick, uniform, and peelable nanofibers film. There was no interaction observed between Luz and PVA in the FTIR study. DSC and XRD analysis showed that luliconazole was loaded into fabricated nanofibers with a reduced crystallinity. FESEM studies confirmed the smooth, defect-free mats of nanofibers. Luz-PVA nanofibers possessed a tensile strength of 21.8 N and a maximum elongation of 10.8%, representing the excellent elasticity of the scaffolds. For Luz-PVA nanofibers, the sustained and complete drug release was observed in 48 h. In antifungal activity using Candida albicans, the Luz-PVA nanofibers showed a greater zone of inhibition (30.55 ± 0.38 mm and 29.27 ± 0.31 mm) than marketed cream (28.06 ± 0.18 mm and 28.47 ± 0.24 mm) and pure drug (27.57 ± 0.17 mm and 27.50 ± 0.47 mm) at 1% concentration in Sabouraud dextrose agar and yeast malt agar, respectively. Therefore, Luz-PVA nanofibers exhibited good mechanical properties, longer retention time, and better antifungal activity than marketed products and, therefore, can be further examined preclinically as a potential treatment option for topical mycotic infection.

摘要

抗真菌剂卢立康唑有乳膏或凝胶剂型可供商业使用。这些传统制剂的主要局限性在于在感染部位的停留时间较短。这项工作的主要目的是开发用于治疗真菌性皮肤病的载卢立康唑聚乙烯醇(Luz-PVA)纳米纤维,使其具有更长的保留时间。通过平板静电纺丝制备Luz-PVA纳米纤维,并对聚合物浓度和工艺参数进行了优化。优化批次(试验5)由10%的聚乙烯醇制备,在22.4 kV的施加电压和14 cm的平板与喷丝头距离下进行处理,以得到厚实、均匀且可剥离的纳米纤维膜。在傅里叶变换红外光谱研究中未观察到Luz与聚乙烯醇之间的相互作用。差示扫描量热法和X射线衍射分析表明,卢立康唑被载入制备的纳米纤维中,结晶度降低。场发射扫描电子显微镜研究证实了纳米纤维垫表面光滑、无缺陷。Luz-PVA纳米纤维具有拉伸强度21.8 N和最大伸长率10.8%,表明支架具有优异的弹性。对于Luz-PVA纳米纤维,在48小时内观察到药物持续且完全释放。在使用白色念珠菌的抗真菌活性测试中,在沙氏葡萄糖琼脂和酵母麦芽琼脂中,1%浓度下,Luz-PVA纳米纤维显示出比市售乳膏(28.06±0.18 mm和28.47±0.24 mm)和纯药物(27.57±0.17 mm和27.50±0.47 mm)更大的抑菌圈(30.55±0.38 mm和29.27±0.31 mm)。因此,Luz-PVA纳米纤维表现出良好的机械性能、更长的保留时间以及比市售产品更好的抗真菌活性,因此可以在临床前进一步作为局部真菌感染的潜在治疗选择进行研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c37/11310262/969ec435722f/10856_2024_6815_Fig1_HTML.jpg

相似文献

5
Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers.
J Biomed Mater Res A. 2015 Sep;103(9):3081-93. doi: 10.1002/jbm.a.35443. Epub 2015 Mar 24.
7
Tyrosol-gold nanoparticle functionalized acacia gum-PVA nanofibers for mitigation of Candida biofilm.
Microb Pathog. 2024 Aug;193:106763. doi: 10.1016/j.micpath.2024.106763. Epub 2024 Jun 25.
8
Antifungal Activity of Eugenol Loaded Electrospun PAN Nanofiber Mats Against Candida Albicans.
Curr Drug Deliv. 2018;15(6):860-866. doi: 10.2174/1567201815666180226120436.
10
Preparation and characterization of gatifloxacin-loaded alginate/poly (vinyl alcohol) electrospun nanofibers.
Artif Cells Nanomed Biotechnol. 2016 May;44(3):847-52. doi: 10.3109/21691401.2014.986676. Epub 2014 Dec 15.

引用本文的文献

1
Poloxamer 188 stabilized poly (ε-caprolactone) microspheres of voriconazole for targeting pulmonary aspergillosis.
Ther Deliv. 2025 Feb;16(2):155-166. doi: 10.1080/20415990.2024.2441647. Epub 2024 Dec 23.

本文引用的文献

3
Cellulose microsponges based gel of naringenin for atopic dermatitis: Design, optimization, in vitro and in vivo investigation.
Int J Biol Macromol. 2020 Dec 1;164:717-725. doi: 10.1016/j.ijbiomac.2020.07.168. Epub 2020 Jul 19.
5
Luliconazole vesicular based gel formulations for its enhanced topical delivery.
J Liposome Res. 2020 Dec;30(4):388-406. doi: 10.1080/08982104.2019.1682602. Epub 2019 Oct 31.
6
Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity.
Heliyon. 2019 May 11;5(5):e01688. doi: 10.1016/j.heliyon.2019.e01688. eCollection 2019 May.
7
Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications.
Chem Rev. 2019 Apr 24;119(8):5298-5415. doi: 10.1021/acs.chemrev.8b00593. Epub 2019 Mar 27.
8
Nanotechnological interventions in dermatophytosis: from oral to topical, a fresh perspective.
Expert Opin Drug Deliv. 2019 Apr;16(4):377-396. doi: 10.1080/17425247.2019.1593962. Epub 2019 Apr 3.
9
Therapeutic tools for oral candidiasis: Current and new antifungal drugs.
Med Oral Patol Oral Cir Bucal. 2019 Mar 1;24(2):e172-e180. doi: 10.4317/medoral.22978.
10
Encapsulation of babchi essential oil into microsponges: Physicochemical properties, cytotoxic evaluation and anti-microbial activity.
J Food Drug Anal. 2019 Jan;27(1):60-70. doi: 10.1016/j.jfda.2018.07.006. Epub 2018 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验