Suppr超能文献

通过最优传输学习通用语义用于对比多视图聚类

Learning Common Semantics via Optimal Transport for Contrastive Multi-View Clustering.

作者信息

Zhang Qian, Zhang Lin, Song Ran, Cong Runmin, Liu Yonghuai, Zhang Wei

出版信息

IEEE Trans Image Process. 2024;33:4501-4515. doi: 10.1109/TIP.2024.3436615. Epub 2024 Aug 19.

Abstract

Multi-view clustering aims to learn discriminative representations from multi-view data. Although existing methods show impressive performance by leveraging contrastive learning to tackle the representation gap between every two views, they share the common limitation of not performing semantic alignment from a global perspective, resulting in the undermining of semantic patterns in multi-view data. This paper presents CSOT, namely Common Semantics via Optimal Transport, to boost contrastive multi-view clustering via semantic learning in a common space that integrates all views. Through optimal transport, the samples in multiple views are mapped to the joint clusters which represent the multi-view semantic patterns in the common space. With the semantic assignment derived from the optimal transport plan, we design a semantic learning module where the soft assignment vector works as a global supervision to enforce the model to learn consistent semantics among all views. Moreover, we propose a semantic-aware re-weighting strategy to treat samples differently according to their semantic significance, which improves the effectiveness of cross-view contrastive representation learning. Extensive experimental results demonstrate that CSOT achieves the state-of-the-art clustering performance.

摘要

多视图聚类旨在从多视图数据中学习有判别力的表示。尽管现有方法通过利用对比学习来解决每两个视图之间的表示差距,展现出了令人印象深刻的性能,但它们都存在一个共同的局限性,即没有从全局角度进行语义对齐,导致多视图数据中的语义模式被破坏。本文提出了CSOT,即通过最优传输实现共同语义,以在整合所有视图的公共空间中通过语义学习来增强对比多视图聚类。通过最优传输,多个视图中的样本被映射到联合聚类中,这些联合聚类代表了公共空间中的多视图语义模式。利用从最优传输计划导出的语义分配,我们设计了一个语义学习模块,其中软分配向量作为全局监督,以强制模型在所有视图之间学习一致的语义。此外,我们提出了一种语义感知重新加权策略,根据样本的语义重要性对其进行不同的处理,这提高了跨视图对比表示学习的有效性。大量实验结果表明,CSOT实现了当前最优的聚类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验