Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States.
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States.
J Chem Inf Model. 2024 Aug 26;64(16):6676-6683. doi: 10.1021/acs.jcim.4c00976. Epub 2024 Aug 8.
AlphaFold 3 (AF3), the latest version of protein structure prediction software, goes beyond its predecessors by predicting protein-protein complexes. It could revolutionize drug discovery and protein engineering, marking a major step toward comprehensive, automated protein structure prediction. However, independent validation of AF3's predictions is necessary. In this work, we evaluate AF3 complex structures using the SKEMPI 2.0 database which involves 317 protein-protein complexes and 8338 mutations. AF3 complex structures when applied to the most advanced TDL model, MT-TopLap (MultiTask-Topological Laplacian), give rise to a very good Pearson correlation coefficient of 0.86 for predicting protein-protein binding free energy changes upon mutation, which is slightly less than the 0.88 achieved earlier with the Protein Data Bank (PDB) structures. Nonetheless, AF3 complex structures led to a 8.6% increase in the prediction RMSE compared to original PDB complex structures. Additionally, some of AF3's complex structures have large errors, which were not captured in its ipTM performance metric. Finally, it is found that AF3's complex structures are not reliable for intrinsically flexible regions or domains.
AlphaFold 3(AF3)是蛋白质结构预测软件的最新版本,通过预测蛋白质-蛋白质复合物超越了其前身。它可能彻底改变药物发现和蛋白质工程,标志着全面、自动化蛋白质结构预测的重大进展。然而,对 AF3 预测的独立验证是必要的。在这项工作中,我们使用包含 317 个蛋白质-蛋白质复合物和 8338 个突变的 SKEMPI 2.0 数据库来评估 AF3 复合物结构。将 AF3 复合物结构应用于最先进的 TDL 模型 MT-TopLap(多任务拓扑拉普拉斯)时,对突变后蛋白质-蛋白质结合自由能变化的预测产生了非常好的 Pearson 相关系数 0.86,略低于早期使用蛋白质数据库(PDB)结构时达到的 0.88。尽管如此,与原始 PDB 复合物结构相比,AF3 复合物结构的预测 RMSE 增加了 8.6%。此外,AF3 的一些复合物结构存在较大误差,这在其 ipTM 性能指标中没有体现。最后,发现 AF3 的复合物结构不可靠,不适用于固有灵活的区域或域。