Suppr超能文献

用于宫颈涂片图像分类任务的双流决策融合网络。

A two-stream decision fusion network for cervical pap-smear image classification tasks.

机构信息

College of Computer and Software Engineering, Hohai University, Nanjing 211100, PR China.

College of Computer and Software Engineering, Hohai University, Nanjing 211100, PR China.

出版信息

Tissue Cell. 2024 Oct;90:102505. doi: 10.1016/j.tice.2024.102505. Epub 2024 Jul 31.

Abstract

Deep learning, especially Convolution Neural Networks (CNNs), has demonstrated superior performance in image recognition and classification tasks. They make complex pattern recognition possible by extracting image features through layers of abstraction. However, despite the excellent performance of deep learning in general image classification, its limitations are becoming apparent in specific domains such as cervical cell medical image classification. This is because although the morphology of cervical cells varies between normal, diseased and cancerous, these differences are sometimes very small and difficult to capture. To solve this problem, we propose a two-stream feature fusion model comprising a manual feature branch, a deep feature branch, and a decision fusion module. Specifically, We process cervical cells through a modified DarkNet backbone network to extract deep features. In order to enhance the learning of deep features, we have devised scale convolution blocks to substitute the original convolution, termed Basic convolution blocks. The manual feature branch comprises a range of traditional features and is linked to a multilayer perceptron. Additionally, we design three decision feature channels trained from both manual and deep features to enhance the model performance in cervical cell classification. Our proposed model demonstrates superior performance when compared to state-of-the-art cervical cell classification models. We establish a 15-category 148762 cervical cytopathology image dataset (CCID). In addition, we additionally conducted experiments on the SIPaKMeD dataset. Numerous experiments show that our proposed model performs excellently compared to state-of-the-art classification models. The outcomes illustrate that our approach can significantly aid pathologists in accurately evaluating cervical smears.

摘要

深度学习,尤其是卷积神经网络(CNN),在图像识别和分类任务中表现出了卓越的性能。它们通过抽象层提取图像特征,从而实现了复杂的模式识别。然而,尽管深度学习在一般图像分类方面表现出色,但在特定领域,如宫颈细胞医学图像分类中,其局限性变得明显。这是因为尽管正常、病变和癌变的宫颈细胞形态有所不同,但这些差异有时非常小,难以捕捉。为了解决这个问题,我们提出了一种由手动特征分支、深度特征分支和决策融合模块组成的双流特征融合模型。具体来说,我们通过修改的 DarkNet 骨干网络处理宫颈细胞,以提取深度特征。为了增强对深度特征的学习,我们设计了尺度卷积块来替代原始卷积,称为 Basic 卷积块。手动特征分支包含一系列传统特征,并与多层感知机相连。此外,我们设计了三个决策特征通道,分别从手动和深度特征中训练,以提高模型在宫颈细胞分类中的性能。与现有的宫颈细胞分类模型相比,我们提出的模型表现出色。我们建立了一个包含 15 个类别的 148762 张宫颈细胞学图像数据集(CCID)。此外,我们还在 SIPaKMeD 数据集上进行了实验。大量实验表明,与现有的分类模型相比,我们提出的模型表现出色。结果表明,我们的方法可以显著帮助病理学家准确评估宫颈涂片。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验