Suppr超能文献

使用基于残差 SE-UNet 和特征拼接方法的细胞核分割和分类技术在宫颈细胞学图像中的应用。

Nucleus segmentation and classification using residual SE-UNet and feature concatenation approach incervical cytopathology cell images.

机构信息

12301Stony Brook University, New York, US.

30026Vellore Institute of Technology, Chennai, India.

出版信息

Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338221134833. doi: 10.1177/15330338221134833.

Abstract

Pap smear is considered to be the primary examination for the diagnosis of cervical cancer. But the analysis of pap smear slides is a time-consuming task and tedious as it requires manual intervention. The diagnostic efficiency depends on the medical expertise of the pathologist, and human error often hinders the diagnosis. Automated segmentation and classification of cervical nuclei will help diagnose cervical cancer in earlier stages. The proposed methodology includes three models: a Residual-Squeeze-and-Excitation-module based segmentation model, a fusion-based feature extraction model, and a Multi-layer Perceptron classification model. In the fusion-based feature extraction model, three sets of deep features are extracted from these segmented nuclei using the pre-trained and fine-tuned VGG19, VGG-F, and CaffeNet models, and two hand-crafted descriptors, Bag-of-Features and Linear-Binary-Patterns, are extracted for each image. For this work, Herlev, SIPaKMeD, and ISBI2014 datasets are used for evaluation. The Herlev datasetis used for evaluating both segmentation and classification models. Whereas the SIPaKMeD and ISBI2014 are used for evaluating the classification model, and the segmentation model respectively. The segmentation network enhanced the precision and ZSI by 2.04%, and 2.00% on the Herlev dataset, and the precision and recall by 0.68%, and 2.59% on the ISBI2014 dataset. The classification approach enhanced the accuracy, recall, and specificity by 0.59%, 0.47%, and 1.15% on the Herlev dataset, and by 0.02%, 0.15%, and 0.22% on the SIPaKMed dataset. The experiments demonstrate that the proposed work achieves promising performance on segmentation and classification in cervical cytopathology cell images..

摘要

巴氏涂片被认为是诊断宫颈癌的主要检查方法。但是,巴氏涂片的分析是一项耗时且繁琐的任务,因为它需要人工干预。诊断效率取决于病理学家的医学专业知识,并且人为错误经常会阻碍诊断。对宫颈核进行自动化分割和分类将有助于更早地诊断宫颈癌。所提出的方法包括三个模型:基于残差挤压激励模块的分割模型、基于融合的特征提取模型和多层感知机分类模型。在基于融合的特征提取模型中,使用经过预训练和微调的 VGG19、VGG-F 和 CaffeNet 模型从这些分割核中提取三组深度特征,并为每张图像提取两个手工制作的描述符,即特征包和线性二值模式。为此,我们使用 Herlev、SIPaKMeD 和 ISBI2014 数据集进行评估。Herlev 数据集用于评估分割和分类模型。SIPaKMeD 和 ISBI2014 数据集分别用于评估分类模型和分割模型。分割网络在 Herlev 数据集上分别将精度和 ZSI 提高了 2.04%和 2.00%,在 ISBI2014 数据集上分别将精度和召回率提高了 0.68%和 2.59%。分类方法在 Herlev 数据集上分别将准确率、召回率和特异性提高了 0.59%、0.47%和 1.15%,在 SIPaKMed 数据集上分别提高了 0.02%、0.15%和 0.22%。实验表明,所提出的工作在宫颈细胞学细胞图像的分割和分类方面取得了有希望的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea50/9905035/9dfe8920c462/10.1177_15330338221134833-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验