Suppr超能文献

全球海表硝酸盐的遥感估算:方法与验证

Remote sensing estimates of global sea surface nitrate: Methodology and validation.

作者信息

Zhong Aifen, Wang Difeng, Gong Fang, Zhu Weidong, Fu Dongyang, Zheng Zhuoqi, Huang Jingjing, He Xianqiang, Bai Yan

机构信息

State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Hangzhou 310012, China.

State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Daya Bay Observation and Research Station of Marine Risks and Hazards, Ministry of Natural Resources, Hangzhou 310012, China.

出版信息

Sci Total Environ. 2024 Nov 10;950:175362. doi: 10.1016/j.scitotenv.2024.175362. Epub 2024 Aug 6.

Abstract

Information about sea surface nitrate (SSN) concentrations is crucial for estimating oceanic new productivity and for carbon cycle studies. Due to the absence of optical properties in SSN and the intricate relationships with environmental factors affecting spatiotemporal dynamics, developing a more representative and widely applicable remote sensing inversion algorithm for SSN is challenging. Most methods for the remote estimation of SSN are based on data-driven neural networks or deep learning and lack mechanistic descriptions. Since fitting functions between the SSN and sea surface temperature (SST), mixed layer depth (MLD), and chlorophyll (Chl) content have been established for the open ocean, it is important to include the remote sensing indicator photosynthetically active radiation (PAR), which is critical in nitrate biogeochemical processes. In this study, we employed an algorithm for estimating the monthly average SSN on a global 1° by 1° resolution grid; this algorithm relies on the empirical relationship between the World Ocean Atlas 2018 (WOA18) monthly interpolated climatology of nitrate in each 1° × 1° grid and the estimated monthly SST and PAR datasets from Moderate Resolution Imaging Spectroradiometer (MODIS) and MLD from the Hybrid Coordinate Ocean Model (HYCOM). These results indicated that PAR potentially affects SSN. Furthermore, validation of the SSN model with measured nitrate data from different months and locations for the years 2018-2023 yielded a high prediction accuracy (N = 12,846, R = 0.93, root mean square difference (RMSE) = 3.12 μmol/L, and mean absolute error (MAE) = 2.22 μmol/L). Further independent validation and sensitivity tests demonstrated the validity of the algorithm for retrieving SSN.

摘要

海面硝酸盐(SSN)浓度信息对于估算海洋新生产力和进行碳循环研究至关重要。由于SSN缺乏光学特性,且与影响时空动态的环境因素存在复杂关系,因此开发一种更具代表性且广泛适用的SSN遥感反演算法具有挑战性。大多数SSN遥感估算方法基于数据驱动的神经网络或深度学习,缺乏机理描述。由于已针对开阔海洋建立了SSN与海面温度(SST)、混合层深度(MLD)和叶绿素(Chl)含量之间的拟合函数,因此纳入在硝酸盐生物地球化学过程中至关重要的遥感指标光合有效辐射(PAR)很重要。在本研究中,我们采用了一种算法来估算全球1°×1°分辨率网格上的月平均SSN;该算法依赖于2018年世界海洋图集(WOA18)在每个1°×1°网格中硝酸盐的月内插气候学与来自中分辨率成像光谱仪(MODIS)的估算月SST和PAR数据集以及来自混合坐标海洋模型(HYCOM)的MLD之间的经验关系。这些结果表明PAR可能会影响SSN。此外,使用2018 - 2023年不同月份和地点的实测硝酸盐数据对SSN模型进行验证,得到了较高的预测精度(N = 12,846,R = 0.93,均方根差(RMSE)= 3.12 μmol/L,平均绝对误差(MAE)= 2.22 μmol/L)。进一步的独立验证和敏感性测试证明了该算法在反演SSN方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验