Suppr超能文献

一种用于制造业中机器人焊接的物理信息与数据驱动框架。

A physics-informed and data-driven framework for robotic welding in manufacturing.

作者信息

Liu Jingbo, Jiang Fan, Tashiro Shinichi, Chen Shujun, Tanaka Manabu

机构信息

Engineering Research Center of Advanced Manufacturing Technology for Automotive Components Ministry of Education, College of Mechanical & Energy Engineering, Beijing University of Technology, Beijing, China.

Joining and Welding Research Institute, Osaka University, Osaka, Japan.

出版信息

Nat Commun. 2025 May 23;16(1):4807. doi: 10.1038/s41467-025-60164-y.

Abstract

The development of artificial intelligence (AI)-based industrial data-driven models is the driving force behind the digital transformation of manufacturing processes and the application of smart manufacturing. However, in real-world industrial applications, the intricate interplay among data quality, model accuracy, and generalizability poses significant challenges, hindering the effective deployment and scalability of data-driven models in complex manufacturing environments. To address this challenge, this paper proposes a universal Physics-informed Hybrid Optimization framework for Efficient Neural Intelligence (PHOENIX) in manufacturing, demonstrating its applicability in robotic welding scenarios. This framework systematically integrates physical principles into its input, model structure, and dynamic optimization processes, enabling proactive, real-time detection and predictive of welding instability. It achieves an accuracy of up to 98% for predictions within the next 50 ms and maintains an accuracy of 86% even for forecasts up to 1 s in advance. Through physics-informed data-driven modeling, the framework significantly reduces the dependence on high-cost data while maintaining the performance of the original model. By leveraging cloud-based optimization modules that integrate new data with historical experience, the framework enables autonomous model parameter optimization, ensuring its continuous adaptation to the complex and dynamic demands of industrial scenarios.

摘要

基于人工智能(AI)的工业数据驱动模型的发展是制造流程数字化转型和智能制造应用的驱动力。然而,在实际工业应用中,数据质量、模型准确性和通用性之间复杂的相互作用带来了重大挑战,阻碍了数据驱动模型在复杂制造环境中的有效部署和扩展性。为应对这一挑战,本文提出了一种用于制造业高效神经智能的通用物理信息混合优化框架(PHOENIX),并展示了其在机器人焊接场景中的适用性。该框架将物理原理系统地集成到其输入、模型结构和动态优化过程中,能够主动、实时地检测和预测焊接不稳定性。对于未来50毫秒内的预测,其准确率高达98%,即使提前1秒进行预测,准确率也能保持在86%。通过基于物理信息的数据驱动建模,该框架在保持原模型性能的同时,显著降低了对高成本数据的依赖。通过利用将新数据与历史经验相结合的基于云的优化模块,该框架实现了模型参数的自主优化,确保其持续适应工业场景的复杂动态需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验