Fang Cheng-Dong, Huang Ying, Sun Yi-Fan, Sun Peng-Fei, Li Ke, Yao Shu-Yang, Zhang Min-Yi, Fang Wei-Hui, Chen Jia-Jia
State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China.
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
Nat Commun. 2024 Aug 8;15(1):6781. doi: 10.1038/s41467-024-51191-2.
Understanding the Li-ions conduction network and transport dynamics in polymer electrolyte is crucial for developing reliable all-solid-state batteries. In this work, advanced nano- X-ray computed tomography combined with Raman spectroscopy and solid state nuclear magnetic resonance are used to multi-scale qualitatively and quantitatively reveal ion conduction network of poly(ethylene) oxide (PEO)-based electrolyte (from atomic, nano to macroscopic level). With the clear mapping of the microstructural heterogeneities of the polymer segments, aluminium-oxo molecular clusters (AlOC) are used to reconstruct a high-efficient conducting network with high available Li-ions (76.7%) and continuous amorphous domains via the strong supramolecular interactions. Such superionic PEO conductor (PEO-LiTFSI-AlOC) exhibites a molten-like Li-ion conduction behaviour among the whole temperature range and delivers an ionic conductivity of 1.87 × 10 S cm at 35 °Ϲ. This further endows Li electrochemical plating/stripping stability under 50 μA cm and 50 μAh cm over 2000 h. The as-built Li|PEO-LiTFSI-AlOC|LiFePO full batteries show a high rate performance and a capacity retention more than 90% over 200 cycling at 250 μA cm, even enabling a high-loading LiFePO cathode of 16.8 mg cm with a specific capacity of 150 mAh g at 50 °Ϲ.
了解聚合物电解质中的锂离子传导网络和传输动力学对于开发可靠的全固态电池至关重要。在这项工作中,先进的纳米X射线计算机断层扫描结合拉曼光谱和固态核磁共振被用于多尺度定性和定量地揭示聚环氧乙烷(PEO)基电解质的离子传导网络(从原子、纳米到宏观层面)。通过清晰地绘制聚合物链段的微观结构不均匀性,铝氧分子簇(AlOC)被用于通过强超分子相互作用重建一个具有高可用锂离子(76.7%)和连续无定形区域的高效导电网络。这种超离子PEO导体(PEO-LiTFSI-AlOC)在整个温度范围内表现出类似熔融态的锂离子传导行为,在35℃时的离子电导率为1.87×10 S cm 。这进一步赋予了锂在50 μA cm 和50 μAh cm 下超过2000小时的电化学镀/剥离稳定性。所构建的Li|PEO-LiTFSI-AlOC|LiFePO全电池显示出高倍率性能,在250 μA cm 下经过200次循环后容量保持率超过90%,甚至在50℃时能够实现16.8 mg cm 的高负载LiFePO正极,比容量为150 mAh g 。