Suppr超能文献

增强型光动力疗法的最新进展:从新机制到创新策略。

Recent advances for enhanced photodynamic therapy: from new mechanisms to innovative strategies.

作者信息

Wang Xia, Peng Jinlei, Meng Chi, Feng Fude

机构信息

MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China

出版信息

Chem Sci. 2024 Jul 12;15(31):12234-12257. doi: 10.1039/d3sc07006a. eCollection 2024 Aug 7.

Abstract

Photodynamic therapy (PDT) has been developed as a potential cancer treatment approach owing to its non-invasiveness, spatiotemporal control and limited side effects. Currently, great efforts have been made to improve the PDT effect in terms of safety and efficiency. In this review, we highlight recent advances in innovative strategies for enhanced PDT, including (1) the development of novel radicals, (2) design of activatable photosensitizers based on the TME and light, and (3) photocatalytic NADH oxidation to damage the mitochondrial electron transport chain. Additionally, the new mechanisms for PDT are also presented as an inspiration for the design of novel PSs. Finally, we discuss the current challenges and future prospects in the clinical practice of these innovative strategies. It is hoped that this review will provide a new angle for understanding the relationship between the intratumoural redox environment and PDT mechanisms, and new ideas for the future development of smart PDT systems.

摘要

光动力疗法(PDT)因其非侵入性、时空可控性和副作用有限,已发展成为一种潜在的癌症治疗方法。目前,人们在提高PDT的安全性和效率方面做出了巨大努力。在这篇综述中,我们重点介绍了增强PDT创新策略的最新进展,包括(1)新型自由基的开发,(2)基于肿瘤微环境(TME)和光的可激活光敏剂的设计,以及(3)光催化NADH氧化以破坏线粒体电子传递链。此外,还介绍了PDT的新机制,为新型光敏剂(PSs)的设计提供灵感。最后,我们讨论了这些创新策略在临床实践中的当前挑战和未来前景。希望这篇综述能为理解肿瘤内氧化还原环境与PDT机制之间的关系提供一个新视角,并为智能PDT系统的未来发展提供新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4f/11304552/1f49a7997673/d3sc07006a-f1.jpg

相似文献

1
Recent advances for enhanced photodynamic therapy: from new mechanisms to innovative strategies.
Chem Sci. 2024 Jul 12;15(31):12234-12257. doi: 10.1039/d3sc07006a. eCollection 2024 Aug 7.
2
Heavy-Atom-Free Photosensitizers: From Molecular Design to Applications in the Photodynamic Therapy of Cancer.
Acc Chem Res. 2021 Jan 5;54(1):207-220. doi: 10.1021/acs.accounts.0c00606. Epub 2020 Dec 8.
3
Insight into the Prospects for Tumor Therapy Based on Photodynamic Immunotherapy.
Pharmaceuticals (Basel). 2022 Nov 4;15(11):1359. doi: 10.3390/ph15111359.
4
Recent advances in noble metal complex based photodynamic therapy.
Chem Sci. 2022 Apr 1;13(18):5085-5106. doi: 10.1039/d1sc05478c. eCollection 2022 May 11.
5
Supramolecular photosensitizers rejuvenate photodynamic therapy.
Chem Soc Rev. 2018 Feb 21;47(4):1174-1188. doi: 10.1039/c7cs00594f. Epub 2018 Jan 15.
6
Recent advances in innovative strategies for enhanced cancer photodynamic therapy.
Theranostics. 2021 Jan 15;11(7):3278-3300. doi: 10.7150/thno.54227. eCollection 2021.
7
Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy.
Chem Rev. 2021 Nov 10;121(21):13454-13619. doi: 10.1021/acs.chemrev.1c00381. Epub 2021 Sep 28.
8
Innovative strategies for enhanced tumor photodynamic therapy.
J Mater Chem B. 2021 Sep 22;9(36):7347-7370. doi: 10.1039/d1tb01466h.
9
Progress of Nanomaterials in Photodynamic Therapy Against Tumor.
Front Bioeng Biotechnol. 2022 May 31;10:920162. doi: 10.3389/fbioe.2022.920162. eCollection 2022.
10
Recent Advances in Photosensitizers as Multifunctional Theranostic Agents for Imaging-Guided Photodynamic Therapy of Cancer.
Theranostics. 2021 Aug 26;11(18):9054-9088. doi: 10.7150/thno.62479. eCollection 2021.

引用本文的文献

2
Optimization of Photodynamic Therapy in Dermatology: The Role of Light Fractionation.
Int J Mol Sci. 2025 Aug 20;26(16):8054. doi: 10.3390/ijms26168054.
3
Phosphole-Based Fluorescent Biomaterials for Imaging and Therapy.
Chem Biomed Imaging. 2025 Feb 14;3(7):404-423. doi: 10.1021/cbmi.4c00096. eCollection 2025 Jul 28.
5
Phenothiazine-Based Nanoaggregates: Dual Role in Bioimaging and Stem Cell-Driven Photodynamic Therapy.
Nanomaterials (Basel). 2025 Jun 10;15(12):894. doi: 10.3390/nano15120894.
7
Exploring the Phototherapeutic Applications of Mitochondria-Targeted COUPY Photocages of Antitumor Drugs.
J Med Chem. 2025 May 8;68(9):9741-9754. doi: 10.1021/acs.jmedchem.5c00550. Epub 2025 Apr 28.

本文引用的文献

3
Reactive Reductive Species Participating Photodynamic Therapy for Cancer Treatment.
Chemistry. 2024 Jan 2;30(1):e202302842. doi: 10.1002/chem.202302842. Epub 2023 Nov 2.
4
Activatable Type I Photosensitizer with Quenched Photosensitization Pre and Post Photodynamic Therapy.
Angew Chem Int Ed Engl. 2023 Nov 13;62(46):e202307288. doi: 10.1002/anie.202307288. Epub 2023 Oct 9.
6
Self-Assembled Nano-PROTAC Enables Near-Infrared Photodynamic Proteolysis for Cancer Therapy.
J Am Chem Soc. 2023 Aug 2;145(30):16642-16649. doi: 10.1021/jacs.3c04109. Epub 2023 Jul 21.
8
Photocatalytic phosphine-mediated water activation for radical hydrogenation.
Nature. 2023 Jul;619(7970):506-513. doi: 10.1038/s41586-023-06141-1. Epub 2023 Jun 28.
9
Cyclic Ruthenium-Peptide Conjugates as Integrin-Targeting Phototherapeutic Prodrugs for the Treatment of Brain Tumors.
J Am Chem Soc. 2023 Jul 12;145(27):14963-14980. doi: 10.1021/jacs.3c04855. Epub 2023 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验