Suppr超能文献

光免疫技术作为一种强大的生物学工具,可用于基于分子的靶细胞和微生物(包括细菌、真菌和病毒)的消除。

Photoimmunotechnology as a powerful biological tool for molecular-based elimination of target cells and microbes, including bacteria, fungi and viruses.

机构信息

Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.

Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.

出版信息

Nat Protoc. 2023 Nov;18(11):3390-3412. doi: 10.1038/s41596-023-00874-z. Epub 2023 Oct 4.

Abstract

Microbial pathogens, including bacteria, fungi and viruses, can develop resistance to clinically used drugs; therefore, finding new therapeutic agents is an ongoing challenge. Recently, we reported the photoimmuno-antimicrobial strategy (PIAS), a type of photoimmunotechnology, that enables molecularly targeted elimination of a wide range of microbes, including the viral pathogen severe acute respiratory syndrome coronavirus 2 and the multidrug-resistant bacterial pathogen methicillin-resistant Staphylococcus aureus (MRSA). PIAS works in the same way as photoimmunotherapy (PIT), which has been used to treat recurrent head and neck cancer in Japan since 2020. Both PIAS and PIT use a monoclonal antibody conjugated to a phthalocyanine derivative dye that undergoes a shape change when photoactivated. This shape change induces a structural change in the antibody-dye conjugate, resulting in physical stress within the binding sites of the conjugate and disrupting them. Therefore, targeting accuracy and flexibility can be determined based on the specificity of the antibody used. In this protocol, we describe how to design a treatment strategy, label monoclonal antibodies with the dye and characterize the products. We provide detailed examples of how to set up and perform PIAS and PIT applications in vitro and in vivo. These examples are PIAS against microbes using MRSA as a representative subject, PIAS against viruses using severe acute respiratory syndrome coronavirus 2 in VeroE6/TMPRSS2 cells, PIAS against MRSA-infected animals, and in vitro and in vivo PIT against cancer cells. The in vitro and in vivo protocols can be completed in ~3 h and 2 weeks, respectively.

摘要

微生物病原体,包括细菌、真菌和病毒,可能对临床使用的药物产生耐药性;因此,寻找新的治疗药物是一个持续的挑战。最近,我们报道了光免疫抗菌策略(PIAS),这是一种光免疫技术,能够对包括病毒病原体严重急性呼吸综合征冠状病毒 2 和多药耐药细菌病原体耐甲氧西林金黄色葡萄球菌(MRSA)在内的多种微生物进行靶向消除。PIAS 的工作原理与光免疫疗法(PIT)相同,自 2020 年以来,PIT 已在日本用于治疗复发性头颈部癌症。PIAS 和 PIT 都使用与酞菁衍生物染料缀合的单克隆抗体,该抗体在光激活时会发生形状变化。这种形状变化诱导抗体-染料缀合物发生结构变化,导致结合部位的物理应力并破坏它们。因此,靶向准确性和灵活性可以基于所用抗体的特异性来确定。在本方案中,我们描述了如何设计治疗策略、用染料标记单克隆抗体以及表征产物。我们提供了详细的示例,说明如何在体外和体内设置和执行 PIAS 和 PIT 应用。这些示例是使用 MRSA 作为代表性主体的针对微生物的 PIAS、使用 VeroE6/TMPRSS2 细胞中的严重急性呼吸综合征冠状病毒 2 的针对病毒的 PIAS、针对感染 MRSA 的动物的 PIAS 以及体外和体内针对癌细胞的 PIT。体外和体内方案分别可在约 3 小时和 2 周内完成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验