Suppr超能文献

基于单宁酸的低转变温度混合物的耐冻超分子粘合剂

Freezing-Tolerant Supramolecular Adhesives from Tannic Acid-Based Low-Transition-Temperature Mixtures.

作者信息

Mercadal Pablo A, Montesinos Maria Del Mar, Macchione Micaela A, Dalosto Sergio D, Bierbrauer Karina L, Calderón Marcelo, González Agustín, Picchio Matias L

机构信息

Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.

Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA-CONICET), 5000 Córdoba, Argentina.

出版信息

ACS Mater Lett. 2024 Jul 17;6(8):3726-3735. doi: 10.1021/acsmaterialslett.4c01212. eCollection 2024 Aug 5.

Abstract

Natural polyphenols like tannic acid (TA) have recently emerged as multifunctional building blocks for designing advanced materials. Herein, we show the benefits of having TA in a dynamic liquid state using low-transition-temperature mixtures (LTTMs) for developing freezing-tolerant glues. TA was combined with betaine or choline chloride to create LTTMs, which direct the self-assembly of guanosine into supramolecular viscoelastic materials with high adhesion. Molecular dynamics simulations showed that the structural properties of the material are linked to strong hydrogen bonding in TA-betaine and TA-choline chloride mixtures. Notably, long-term and repeatable adhesion was achieved even at -196 °C due to the binding ability of TA's catechol and gallol units and the mixtures' glass transition temperature. Additionally, the adhesives demonstrated injectability and low toxicity against fibroblasts . These traits reveal the potential of these systems as bioadhesives for tissue repair, opening new avenues for creating multifunctional soft materials with bioactive properties.

摘要

像单宁酸(TA)这样的天然多酚最近已成为设计先进材料的多功能构建模块。在此,我们展示了在动态液态下使用低转变温度混合物(LTTMs)来开发耐冻胶水时TA的益处。TA与甜菜碱或氯化胆碱结合以创建LTTMs,其引导鸟苷自组装成具有高粘附力的超分子粘弹性材料。分子动力学模拟表明,该材料的结构特性与TA-甜菜碱和TA-氯化胆碱混合物中的强氢键有关。值得注意的是,由于TA的儿茶酚和没食子醇单元的结合能力以及混合物的玻璃化转变温度,即使在-196°C时也能实现长期且可重复的粘附。此外,这些粘合剂表现出可注射性且对成纤维细胞毒性低。这些特性揭示了这些系统作为组织修复生物粘合剂的潜力,为创建具有生物活性的多功能软材料开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e707/11307168/bcd7af3f5071/tz4c01212_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验