University of Science and Technology (NTNU), Prinsesse Kristinas Gate 3, 7030, Trondheim, Norway.
University of Science and Technology (NTNU), Prinsesse Kristinas Gate 3, 7030, Trondheim, Norway; Clinic of Thoracic Surgery, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway.
Ultrasound Med Biol. 2024 Nov;50(11):1628-1637. doi: 10.1016/j.ultrasmedbio.2024.06.008. Epub 2024 Aug 8.
The proximal isovelocity surface area (PISA) method is a well-established approach for mitral regurgitation (MR) quantification. However, it exhibits high inter-observer variability and inaccuracies in cases of non-hemispherical flow convergence and non-holosystolic MR. To address this, we present EasyPISA, a framework for automated integrated PISA measurements taken directly from 2-D color-Doppler sequences.
We trained convolutional neural networks (UNet/Attention UNet) on 1171 images from 196 recordings (54 patients) to detect and segment flow convergence zones in 2-D color-Doppler images. Different preprocessing schemes and model architectures were compared. Flow convergence surface areas were estimated, accounting for non-hemispherical convergence, and regurgitant volume (RVol) was computed by integrating the flow rate over time. EasyPISA was retrospectively applied to 26 MR patient examinations, comparing results with reference PISA RVol measurements, severity grades, and cMRI RVol measurements for 13 patients.
The UNet trained on duplex images achieved the best results (precision: 0.63, recall: 0.95, dice: 0.58, flow rate error: 10.4 ml/s). Mitigation of false-positive segmentation on the atrial side of the mitral valve was achieved through integration with a mitral valve segmentation network. The intraclass correlation coefficient was 0.83 between EasyPISA and PISA, and 0.66 between EasyPISA and cMRI. Relative standard deviations were 46% and 53%, respectively. Receiver operator characteristics demonstrated a mean area under the curve between 0.90 and 0.97 for EasyPISA RVol estimates and reference severity grades.
EasyPISA demonstrates promising results for fully automated integrated PISA measurements in MR, offering potential benefits in workload reduction and mitigating inter-observer variability in MR assessment.
等速表面积(PISA)法是一种用于二尖瓣反流(MR)定量的成熟方法。然而,在非半球形血流汇聚和非全收缩期 MR 的情况下,它表现出较高的观察者间变异性和不准确性。为了解决这个问题,我们提出了 EasyPISA,这是一种从二维彩色多普勒序列直接获取自动综合 PISA 测量的框架。
我们在 196 个记录(54 个患者)的 1171 张图像上训练卷积神经网络(UNet/Attention UNet),以检测和分割二维彩色多普勒图像中的血流汇聚区。比较了不同的预处理方案和模型结构。估计了流汇聚表面区域,考虑到非半球形汇聚,并通过随时间积分流量来计算反流容积(RVol)。将 EasyPISA 应用于 26 例 MR 患者检查,与参考 PISA RVol 测量、严重程度等级和 13 例患者的 cMRI RVol 测量结果进行比较。
在双工图像上训练的 UNet 取得了最佳结果(精度:0.63,召回率:0.95,Dice 系数:0.58,流速误差:10.4 ml/s)。通过与二尖瓣分段网络集成,实现了对二尖瓣瓣环心房侧假阳性分割的缓解。EasyPISA 与 PISA 之间的组内相关系数为 0.83,EasyPISA 与 cMRI 之间的组内相关系数为 0.66。相对标准偏差分别为 46%和 53%。接受者操作特性表明,EasyPISA 的平均曲线下面积在 0.90 到 0.97 之间,用于 MR 的 RVol 估计和参考严重程度等级。
EasyPISA 为 MR 中全自动综合 PISA 测量提供了有前途的结果,有望在减少工作量和减轻 MR 评估中的观察者间变异性方面带来益处。