Suppr超能文献

Delta放射组学能否改善接受免疫检查点抑制剂治疗的黑色素瘤患者的最佳总体缓解率、无进展生存期和总生存期的预测?

Can Delta Radiomics Improve the Prediction of Best Overall Response, Progression-Free Survival, and Overall Survival of Melanoma Patients Treated with Immune Checkpoint Inhibitors?

作者信息

Peisen Felix, Gerken Annika, Hering Alessa, Dahm Isabel, Nikolaou Konstantin, Gatidis Sergios, Eigentler Thomas K, Amaral Teresa, Moltz Jan H, Othman Ahmed E

机构信息

Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany.

Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany.

出版信息

Cancers (Basel). 2024 Jul 26;16(15):2669. doi: 10.3390/cancers16152669.

Abstract

BACKGROUND

The prevalence of metastatic melanoma is increasing, necessitating the identification of patients who do not benefit from immunotherapy. This study aimed to develop a radiomic biomarker based on the segmentation of all metastases at baseline and the first follow-up CT for the endpoints best overall response (BOR), progression-free survival (PFS), and overall survival (OS), encompassing various immunotherapies. Additionally, this study investigated whether reducing the number of segmented metastases per patient affects predictive capacity.

METHODS

The total tumour load, excluding cerebral metastases, from 146 baseline and 146 first follow-up CTs of melanoma patients treated with first-line immunotherapy was volumetrically segmented. Twenty-one random forest models were trained and compared for the endpoints BOR; PFS at 6, 9, and 12 months; and OS at 6, 9, and 12 months, using as input either only clinical parameters, whole-tumour-load delta radiomics plus clinical parameters, or delta radiomics from the largest ten metastases plus clinical parameters.

RESULTS

The whole-tumour-load delta radiomics model performed best for BOR (AUC 0.81); PFS at 6, 9, and 12 months (AUC 0.82, 0.80, and 0.77); and OS at 6 months (AUC 0.74). The model using delta radiomics from the largest ten metastases performed best for OS at 9 and 12 months (AUC 0.71 and 0.75). Although the radiomic models were numerically superior to the clinical model, statistical significance was not reached.

CONCLUSIONS

The findings indicate that delta radiomics may offer additional value for predicting BOR, PFS, and OS in metastatic melanoma patients undergoing first-line immunotherapy. Despite its complexity, volumetric whole-tumour-load segmentation could be advantageous.

摘要

背景

转移性黑色素瘤的患病率正在上升,因此有必要识别出无法从免疫治疗中获益的患者。本研究旨在基于基线和首次随访CT对所有转移灶进行分割,开发一种用于评估最佳总体缓解(BOR)、无进展生存期(PFS)和总生存期(OS)的影像组学生物标志物,涵盖多种免疫治疗。此外,本研究还调查了减少每位患者分割的转移灶数量是否会影响预测能力。

方法

对接受一线免疫治疗的黑色素瘤患者的146份基线CT和146份首次随访CT进行容积分割,排除脑转移灶后的总肿瘤负荷。针对BOR、6个月、9个月和12个月的PFS以及6个月、9个月和12个月的OS这几个终点,训练并比较了21个随机森林模型,输入数据分别仅为临床参数、全肿瘤负荷变化影像组学加临床参数,或最大的十个转移灶的变化影像组学加临床参数。

结果

全肿瘤负荷变化影像组学模型在BOR(AUC 0.81)、6个月、9个月和12个月的PFS(AUC 0.82、0.80和0.77)以及6个月的OS(AUC 0.74)方面表现最佳。使用最大的十个转移灶的变化影像组学模型在9个月和12个月的OS方面表现最佳(AUC 0.71和0.75)。尽管影像组学模型在数值上优于临床模型,但未达到统计学显著性。

结论

研究结果表明,变化影像组学可能为预测接受一线免疫治疗的转移性黑色素瘤患者的BOR、PFS和OS提供额外价值。尽管其具有复杂性,但容积性全肿瘤负荷分割可能具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/599a/11312160/f15394beb510/cancers-16-02669-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验