Suppr超能文献

人工智能与放射组学:免疫疗法治疗晚期黑色素瘤患者的临床应用

Artificial Intelligence and Radiomics: Clinical Applications for Patients with Advanced Melanoma Treated with Immunotherapy.

作者信息

McGale Jeremy, Hama Jakob, Yeh Randy, Vercellino Laetitia, Sun Roger, Lopci Egesta, Ammari Samy, Dercle Laurent

机构信息

Department of Radiology, New York-Presbyterian Hospital, New York, NY 10032, USA.

Queens Hospital Center, Icahn School of Medicine at Mt. Sinai, Queens, NY 10029, USA.

出版信息

Diagnostics (Basel). 2023 Sep 27;13(19):3065. doi: 10.3390/diagnostics13193065.

Abstract

Immunotherapy has greatly improved the outcomes of patients with metastatic melanoma. However, it has also led to new patterns of response and progression, creating an unmet need for better biomarkers to identify patients likely to achieve a lasting clinical benefit or experience immune-related adverse events. In this study, we performed a focused literature survey covering the application of artificial intelligence (AI; in the form of radiomics, machine learning, and deep learning) to patients diagnosed with melanoma and treated with immunotherapy, reviewing 12 studies relevant to the topic published up to early 2022. The most commonly investigated imaging modality was CT imaging in isolation ( = 9, 75.0%), while patient cohorts were most frequently recruited retrospectively and from single institutions ( = 7, 58.3%). Most studies concerned the development of AI tools to assist in prognostication ( = 5, 41.7%) or the prediction of treatment response ( = 6, 50.0%). Validation methods were disparate, with two studies (16.7%) performing no validation and equal numbers using cross-validation ( = 3, 25%), a validation set ( = 3, 25%), or a test set ( = 3, 25%). Only one study used both validation and test sets ( = 1, 8.3%). Overall, promising results have been observed for the application of AI to immunotherapy-treated melanoma. Further improvement and eventual integration into clinical practice may be achieved through the implementation of rigorous validation using heterogeneous, prospective patient cohorts.

摘要

免疫疗法极大地改善了转移性黑色素瘤患者的治疗效果。然而,它也导致了新的反应和进展模式,因此迫切需要更好的生物标志物来识别可能获得持久临床益处或经历免疫相关不良事件的患者。在本研究中,我们进行了一项有针对性的文献调查,涵盖了人工智能(以放射组学、机器学习和深度学习的形式)在诊断为黑色素瘤并接受免疫治疗的患者中的应用,回顾了截至2022年初发表的12项与该主题相关的研究。最常研究的成像方式是单独的CT成像(n = 9,75.0%),而患者队列大多是回顾性招募的,且来自单一机构(n = 7,58.3%)。大多数研究关注人工智能工具的开发,以协助进行预后评估(n = 5,41.7%)或预测治疗反应(n = 6,50.0%)。验证方法各不相同,两项研究(16.7%)未进行验证,使用交叉验证(n = 3,25%)、验证集(n = 3,25%)或测试集(n = 3,25%)的研究数量相同。只有一项研究同时使用了验证集和测试集(n = 1,8.3%)。总体而言,人工智能在接受免疫治疗的黑色素瘤中的应用已观察到有前景的结果。通过使用异质性前瞻性患者队列进行严格验证,可能会实现进一步的改进并最终整合到临床实践中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a842/10573034/85f47d122366/diagnostics-13-03065-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验