Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.
Diagnostic Image Analysis Group, Radboudumc, Nijmegen, Netherlands.
Int J Comput Assist Radiol Surg. 2024 Sep;19(9):1689-1697. doi: 10.1007/s11548-024-03181-4. Epub 2024 May 30.
AI-assisted techniques for lesion registration and segmentation have the potential to make CT-based tumor follow-up assessment faster and less reader-dependent. However, empirical evidence on the advantages of AI-assisted volumetric segmentation for lymph node and soft tissue metastases in follow-up CT scans is lacking. The aim of this study was to assess the efficiency, quality, and inter-reader variability of an AI-assisted workflow for volumetric segmentation of lymph node and soft tissue metastases in follow-up CT scans. Three hypotheses were tested: (H1) Assessment time for follow-up lesion segmentation is reduced using an AI-assisted workflow. (H2) The quality of the AI-assisted segmentation is non-inferior to the quality of fully manual segmentation. (H3) The inter-reader variability of the resulting segmentations is reduced with AI assistance.
The study retrospectively analyzed 126 lymph nodes and 135 soft tissue metastases from 55 patients with stage IV melanoma. Three radiologists from two institutions performed both AI-assisted and manual segmentation, and the results were statistically analyzed and compared to a manual segmentation reference standard.
AI-assisted segmentation reduced user interaction time significantly by 33% (222 s vs. 336 s), achieved similar Dice scores (0.80-0.84 vs. 0.81-0.82) and decreased inter-reader variability (median Dice 0.85-1.0 vs. 0.80-0.82; ICC 0.84 vs. 0.80), compared to manual segmentation.
The findings of this study support the use of AI-assisted registration and volumetric segmentation for lymph node and soft tissue metastases in follow-up CT scans. The AI-assisted workflow achieved significant time savings, similar segmentation quality, and reduced inter-reader variability compared to manual segmentation.
人工智能辅助技术在病变配准和分割方面具有使基于 CT 的肿瘤随访评估更快且对读者依赖性更低的潜力。然而,在随访 CT 扫描中,人工智能辅助容积分割对淋巴结和软组织转移的优势的经验证据尚缺乏。本研究旨在评估人工智能辅助工作流程在随访 CT 扫描中进行淋巴结和软组织转移容积分割的效率、质量和读者间变异性。提出了三个假设:(H1)使用人工智能辅助工作流程可减少随访病变分割的评估时间。(H2)人工智能辅助分割的质量不劣于完全手动分割的质量。(H3)借助人工智能辅助可减少分割结果的读者间变异性。
本研究回顾性分析了 55 例 IV 期黑色素瘤患者的 126 个淋巴结和 135 个软组织转移。来自两个机构的 3 名放射科医生分别进行了人工智能辅助和手动分割,对结果进行了统计学分析,并与手动分割参考标准进行了比较。
与手动分割相比,人工智能辅助分割显著减少了 33%的用户交互时间(222 秒对 336 秒),达到了相似的 Dice 评分(0.80-0.84 对 0.81-0.82),并降低了读者间变异性(中位数 Dice 0.85-1.0 对 0.80-0.82;ICC 0.84 对 0.80)。
本研究结果支持在随访 CT 扫描中使用人工智能辅助注册和容积分割进行淋巴结和软组织转移。与手动分割相比,人工智能辅助工作流程在时间节省、分割质量和读者间变异性方面都具有显著优势。