Suppr超能文献

选择性激光熔化制造的热管的可控孔隙率:热管表面孔隙识别的实验分析与机器学习方法

Controlled Porosity of Selective Laser Melting-Produced Thermal Pipes: Experimental Analysis and Machine Learning Approach for Pore Recognition on Pipes Surfaces.

作者信息

Malashin Ivan, Martysyuk Dmitry, Tynchenko Vadim, Nelyub Vladimir, Borodulin Aleksei, Gantimurov Andrei, Nisan Anton, Novozhilov Nikolay, Zelentsov Viatcheslav, Filimonov Aleksey, Galinovsky Andrey

机构信息

Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia.

Scientific Department, Far Eastern Federal University, 690922 Vladivostok, Russia.

出版信息

Sensors (Basel). 2024 Jul 31;24(15):4959. doi: 10.3390/s24154959.

Abstract

This study investigates the methods for controlling porosity in thermal pipes manufactured using selective laser melting (SLM) technology. Experiments conducted include water permeability tests and surface roughness measurements, which are complemented by SEM image ML-based analysis for pore recognition. The results elucidate the impact of SLM printing parameters on water permeability. Specifically, an increase in hatch and point distances leads to a linear rise in permeability, while higher laser power diminishes permeability. Using machine learning (ML) techniques, precise pore identification on SEM images depicting surface microstructures of the samples is achieved. The average percentage of the surface area containing detected pores for microstructure samples printed with laser parameters (laser power (W) _ hatch distance (µm) _ point distance (µm)) 175_ 80_80 was found to be 5.2%, while for 225_120_120, it was 4.2%, and for 275_160_160, it was 3.8%. Pore recognition was conducted using the Haar feature-based method, and the optimal patch size was determined to be 36 pixels on monochrome images of microstructures with a magnification of 33×, which were acquired using a Leica S9 D microscope.

摘要

本研究调查了使用选择性激光熔化(SLM)技术制造的热管中孔隙率的控制方法。进行的实验包括透水性测试和表面粗糙度测量,并辅以基于扫描电子显微镜(SEM)图像机器学习的孔隙识别分析。结果阐明了SLM打印参数对透水性的影响。具体而言,扫描间距和点间距的增加会导致渗透率呈线性上升,而较高的激光功率会降低渗透率。使用机器学习(ML)技术,可以在描绘样品表面微观结构的SEM图像上实现精确的孔隙识别。发现使用激光参数(激光功率(W)_扫描间距(µm)_点间距(µm))175_80_80打印的微观结构样品中,含有检测到孔隙的表面积平均百分比为5.2%,而对于225_120_120的样品,该百分比为4.2%,对于275_160_160的样品,该百分比为3.8%。使用基于哈尔特征的方法进行孔隙识别,在使用徕卡S9 D显微镜以33倍放大率获取的微观结构单色图像上,确定最佳补丁大小为36像素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fba/11315004/238618def271/sensors-24-04959-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验