Wang Shuyang, Li Qianjun, Yang Tao, Li Zhenghao, Bai Dan, Tang Chenwei, Pu Haibo
College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China.
College of Computer Science, Sichuan University, Chengdu 610065, China.
Plants (Basel). 2024 Jul 26;13(15):2069. doi: 10.3390/plants13152069.
Lemon, as an important cash crop with rich nutritional value, holds significant cultivation importance and market demand worldwide. However, lemon diseases seriously impact the quality and yield of lemons, necessitating their early detection for effective control. This paper addresses this need by collecting a dataset of lemon diseases, consisting of 726 images captured under varying light levels, growth stages, shooting distances and disease conditions. Through cropping high-resolution images, the dataset is expanded to 2022 images, comprising 4441 healthy lemons and 718 diseased lemons, with approximately 1-6 targets per image. Then, we propose a novel model lemon surface disease YOLO (LSD-YOLO), which integrates Switchable Atrous Convolution (SAConv) and Convolutional Block Attention Module (CBAM), along with the design of C2f-SAC and the addition of a small-target detection layer to enhance the extraction of key features and the fusion of features at different scales. The experimental results demonstrate that the proposed LSD-YOLO achieves an accuracy of 90.62% on the collected datasets, with mAP@50-95 reaching 80.84%. Compared with the original YOLOv8n model, both mAP@50 and mAP@50-95 metrics are enhanced. Therefore, the LSD-YOLO model proposed in this study provides a more accurate recognition of healthy and diseased lemons, contributing effectively to solving the lemon disease detection problem.
柠檬作为一种具有丰富营养价值的重要经济作物,在全球范围内具有重要的种植意义和市场需求。然而,柠檬病害严重影响柠檬的品质和产量,因此需要尽早检测以进行有效控制。本文通过收集柠檬病害数据集来满足这一需求,该数据集由在不同光照水平、生长阶段、拍摄距离和病害状况下拍摄的726张图像组成。通过裁剪高分辨率图像,数据集扩展到2022张图像,包括4441个健康柠檬和718个患病柠檬,每张图像大约有1 - 6个目标。然后,我们提出了一种新颖的模型——柠檬表面病害YOLO(LSD - YOLO),它集成了可切换空洞卷积(SAConv)和卷积块注意力模块(CBAM),同时设计了C2f - SAC并添加了小目标检测层,以增强关键特征的提取和不同尺度特征的融合。实验结果表明,所提出的LSD - YOLO在收集的数据集中达到了90.62%的准确率,mAP@50 - 95达到80.84%。与原始的YOLOv8n模型相比,mAP@50和mAP@50 - 95指标均得到了提高。因此,本研究提出的LSD - YOLO模型能够更准确地识别健康和患病柠檬,为解决柠檬病害检测问题做出了有效贡献。