Suppr超能文献

使用YOLO-NeuroBoost模型增强MRI图像中的脑肿瘤检测

Enhancing brain tumor detection in MRI images using YOLO-NeuroBoost model.

作者信息

Chen Aruna, Lin Da, Gao Qiqi

机构信息

College of Mathematics Science, Inner Mongolia Normal University, Hohhot, China.

Center for Applied Mathematical Science, Inner Mongolia, Hohhot, China.

出版信息

Front Neurol. 2024 Aug 22;15:1445882. doi: 10.3389/fneur.2024.1445882. eCollection 2024.

Abstract

Brain tumors are diseases characterized by abnormal cell growth within or around brain tissues, including various types such as benign and malignant tumors. However, there is currently a lack of early detection and precise localization of brain tumors in MRI images, posing challenges to diagnosis and treatment. In this context, achieving accurate target detection of brain tumors in MRI images becomes particularly important as it can improve the timeliness of diagnosis and the effectiveness of treatment. To address this challenge, we propose a novel approach-the YOLO-NeuroBoost model. This model combines the improved YOLOv8 algorithm with several innovative techniques, including dynamic convolution KernelWarehouse, attention mechanism CBAM (Convolutional Block Attention Module), and Inner-GIoU loss function. Our experimental results demonstrate that our method achieves mAP scores of 99.48 and 97.71 on the Br35H dataset and the open-source Roboflow dataset, respectively, indicating the high accuracy and efficiency of this method in detecting brain tumors in MRI images. This research holds significant importance for improving early diagnosis and treatment of brain tumors and provides new possibilities for the development of the medical image analysis field.

摘要

脑肿瘤是以脑组织内或其周围细胞异常生长为特征的疾病,包括良性和恶性肿瘤等多种类型。然而,目前在MRI图像中缺乏对脑肿瘤的早期检测和精确定位,这给诊断和治疗带来了挑战。在此背景下,实现MRI图像中脑肿瘤的精确目标检测变得尤为重要,因为它可以提高诊断的及时性和治疗的有效性。为应对这一挑战,我们提出了一种新颖的方法——YOLO-NeuroBoost模型。该模型将改进的YOLOv8算法与多种创新技术相结合,包括动态卷积内核库、注意力机制CBAM(卷积块注意力模块)和Inner-GIoU损失函数。我们的实验结果表明,我们的方法在Br35H数据集和开源的Roboflow数据集上分别取得了99.48和97.71的平均精度均值(mAP)分数,表明该方法在检测MRI图像中的脑肿瘤方面具有很高的准确性和效率。这项研究对于改善脑肿瘤的早期诊断和治疗具有重要意义,并为医学图像分析领域的发展提供了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb66/11374633/fae43579cf2c/fneur-15-1445882-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验