Suppr超能文献

一项关于利用带选择的RGB和多光谱图像进行自动肿瘤分级的效用的分析研究。

An Analytical Study on the Utility of RGB and Multispectral Imagery with Band Selection for Automated Tumor Grading.

作者信息

Kunhoth Suchithra, Al-Maadeed Somaya

机构信息

Department of Computer Science and Enginering, Qatar University, Doha 2713, Qatar.

出版信息

Diagnostics (Basel). 2024 Jul 27;14(15):1625. doi: 10.3390/diagnostics14151625.

Abstract

The implementation of tumor grading tasks with image processing and machine learning techniques has progressed immensely over the past several years. Multispectral imaging enabled us to capture the sample as a set of image bands corresponding to different wavelengths in the visible and infrared spectrums. The higher dimensional image data can be well exploited to deliver a range of discriminative features to support the tumor grading application. This paper compares the classification accuracy of RGB and multispectral images, using a case study on colorectal tumor grading with the QU-Al Ahli Dataset (dataset I). Rotation-invariant local phase quantization (LPQ) features with an SVM classifier resulted in 80% accuracy for the RGB images compared to 86% accuracy with the multispectral images in dataset I. However, the higher dimensionality elevates the processing time. We propose a band-selection strategy using mutual information between image bands. This process eliminates redundant bands and increases classification accuracy. The results show that our band-selection method provides better results than normal RGB and multispectral methods. The band-selection algorithm was also tested on another colorectal tumor dataset, the Texas University Dataset (dataset II), to further validate the results. The proposed method demonstrates an accuracy of more than 94% with 10 bands, compared to using the whole set of 16 multispectral bands. Our research emphasizes the advantages of multispectral imaging over the RGB imaging approach and proposes a band-selection method to address the higher computational demands of multispectral imaging.

摘要

在过去几年中,利用图像处理和机器学习技术执行肿瘤分级任务取得了巨大进展。多光谱成像使我们能够将样本捕获为一组对应于可见光和红外光谱中不同波长的图像波段。更高维度的图像数据可以得到充分利用,以提供一系列判别特征来支持肿瘤分级应用。本文通过使用QU-Al Ahli数据集(数据集I)对结直肠肿瘤分级进行案例研究,比较了RGB图像和多光谱图像的分类准确率。使用支持向量机分类器的旋转不变局部相位量化(LPQ)特征对RGB图像的准确率为80%,而在数据集I中多光谱图像的准确率为86%。然而,更高的维度会增加处理时间。我们提出了一种利用图像波段之间互信息的波段选择策略。这个过程消除了冗余波段并提高了分类准确率。结果表明,我们的波段选择方法比普通的RGB和多光谱方法提供了更好的结果。波段选择算法还在另一个结直肠肿瘤数据集——德克萨斯大学数据集(数据集II)上进行了测试,以进一步验证结果。与使用全部16个多光谱波段相比,所提出的方法在使用10个波段时的准确率超过94%。我们的研究强调了多光谱成像相对于RGB成像方法的优势,并提出了一种波段选择方法来应对多光谱成像更高的计算需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed72/11312293/72ad5b399d10/diagnostics-14-01625-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验