Suppr超能文献

基于等离子体针式内窥系统的机器学习辅助无标记结直肠癌诊断

Machine learning-assisted label-free colorectal cancer diagnosis using plasmonic needle-endoscopy system.

机构信息

Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea; School of Chemical Engineering, Pusan National University, Busan, 46241, South Korea.

Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea.

出版信息

Biosens Bioelectron. 2024 Nov 15;264:116633. doi: 10.1016/j.bios.2024.116633. Epub 2024 Aug 3.

Abstract

Early and accurate detection of colorectal cancer (CRC) is critical for improving patient outcomes. Existing diagnostic techniques are often invasive and carry risks of complications. Herein, we introduce a plasmonic gold nanopolyhedron (AuNH)-coated needle-based surface-enhanced Raman scattering (SERS) sensor, integrated with endoscopy, for direct mucus sampling and label-free detection of CRC. The thin and flexible stainless-steel needle is coated with polymerized dopamine, which serves as an adhesive layer and simultaneously initiates the nucleation of gold nanoparticle (AuNP) seeds on the needle surface. The AuNP seeds are further grown through a surface-directed reduction using Au ions-hydroxylamine hydrochloride solution, resulting in the formation of dense AuNHs. The formation mechanism of AuNHs and the layered structure of the plasmonic needle-based SERS (PNS) sensor are thoroughly analyzed. Furthermore, a strong field enhancement of the PNS sensor is observed, amplified around the edges of the polyhedral shapes and at nanogap sites between AuNHs. The feasibility of the PNS sensor combined with endoscopy system is further investigated using mouse models for direct colonic mucus sampling and verifying noninvasive label-free classification of CRC from normal controls. A logistic regression-based machine learning method is employed and successfully differentiates CRC and normal mice, achieving 100% sensitivity, 93.33% specificity, and 96.67% accuracy. Moreover, Raman profiling of metabolites and their correlations with Raman signals of mucus samples are analyzed using the Pearson correlation coefficient, offering insights for identifying potential cancer biomarkers. The developed PNS-assisted endoscopy technology is expected to advance the early screening and diagnosis approach of CRC in the future.

摘要

早期准确地检测结直肠癌(CRC)对于改善患者预后至关重要。现有的诊断技术通常具有侵入性,并存在并发症的风险。在此,我们引入了一种基于等离子体金纳米多面体(AuNH)的针状表面增强拉曼散射(SERS)传感器,与内窥镜结合,用于直接对粘液进行采样和对 CRC 进行无标记检测。这种薄而灵活的不锈钢针涂有聚合多巴胺,它既是一种粘合层,又同时在针表面引发金纳米颗粒(AuNP)种子的成核。AuNP 种子通过使用 Au 离子-羟胺盐酸溶液进行表面导向还原进一步生长,从而形成密集的 AuNHs。彻底分析了 AuNHs 的形成机制和等离子体针状 SERS(PNS)传感器的分层结构。此外,观察到 PNS 传感器的强场增强,在多面体形状的边缘和 AuNHs 之间的纳米间隙处放大。进一步使用小鼠模型进行直接结肠粘液采样,并验证从正常对照中对 CRC 进行非侵入性无标记分类,研究了 PNS 传感器与内窥镜系统相结合的可行性。采用基于逻辑回归的机器学习方法,成功区分了 CRC 和正常小鼠,实现了 100%的灵敏度、93.33%的特异性和 96.67%的准确率。此外,使用皮尔逊相关系数分析了代谢物的拉曼谱及其与粘液样本拉曼信号的相关性,为鉴定潜在的癌症生物标志物提供了见解。所开发的 PNS 辅助内窥镜技术有望在未来推进 CRC 的早期筛查和诊断方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验