School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing 210093, China.
Prog Neuropsychopharmacol Biol Psychiatry. 2024 Dec 20;135:111117. doi: 10.1016/j.pnpbp.2024.111117. Epub 2024 Aug 8.
The widespread problem of suicide and its severe burden in bipolar disorder (BD) necessitate the development of objective risk markers, aiming to enhance individual suicide risk prediction in BD.
This study recruited 123 BD patients (61 patients with prior suicide attempted history (PSAs), 62 without (NSAs)) and 68 healthy controls (HEs). The Latent Dirichlet Allocation (LDA) model was used to decompose the resting state functional connectivity (RSFC) into multiple hyper/hypo-RSFC patterns. Thereafter, according to the quantitative results of individual heterogeneity over latent factor dimensions, the correlations were analyzed to test prediction ability.
Model constructed without introducing suicide-related labels yielded three latent factors with dissociable hyper/hypo-RSFC patterns. In the subsequent analysis, significant differences in the factor distributions of PSAs and NSAs showed biases on the default-mode network (DMN) hyper-RSFC factor (factor 3) and the salience network (SN) and central executive network (CEN) hyper-RSFC factor (factor 1), indicating predictive value. Correlation analysis of the individuals' expressions with their Nurses' Global Assessment of Suicide Risk (NGASR) revealed factor 3 positively correlated (r = 0.4180, p < 0.0001) and factor 1 negatively correlated (r = - 0.2492, p = 0.0055) with suicide risk. Therefore, it could be speculated that patterns more associated with suicide reflected hyper-connectivity in DMN and hypo-connectivity in SN, CEN.
This study provided individual suicide-associated risk factors that could reflect the abnormal RSFC patterns, and explored the suicide related brain mechanisms, which is expected to provide supports for clinical decision-making and timely screening and intervention for individuals at high risks of suicide.
自杀问题广泛存在且在双相障碍(BD)中负担沉重,这就需要开发客观的风险标志物,旨在提高 BD 中个体自杀风险预测能力。
本研究纳入 123 名 BD 患者(61 名有自杀未遂史(PSAs),62 名无自杀未遂史(NSAs))和 68 名健康对照者(HEs)。采用潜在狄利克雷分配(LDA)模型将静息态功能连接(RSFC)分解为多个高/低 RSFC 模式。然后,根据个体在潜在因子维度上的异质性的定量结果,进行相关性分析以检验预测能力。
未引入自杀相关标签的模型构建产生了三个具有不同高/低 RSFC 模式的潜在因子。在随后的分析中,PSAs 和 NSAs 的因子分布差异显示,默认模式网络(DMN)高 RSFC 因子(因子 3)和突显网络(SN)和中央执行网络(CEN)高 RSFC 因子(因子 1)存在偏倚,表明具有预测价值。对个体与护士全球评估自杀风险(NGASR)之间的相关性分析表明,因子 3 呈正相关(r=0.4180,p<0.0001),因子 1 呈负相关(r=-0.2492,p=0.0055)与自杀风险相关。因此,可以推测与自杀更相关的模式反映了 DMN 中的过度连接和 SN、CEN 中的连接不足。
本研究提供了与自杀相关的个体风险因素,这些因素可以反映异常的 RSFC 模式,并探讨了自杀相关的大脑机制,有望为临床决策提供支持,并及时对高自杀风险个体进行筛查和干预。