Suppr超能文献

打印和铣削义齿基托材料的弯曲强度比较。

Comparison of the flexural strength of printed and milled denture base materials.

机构信息

Oral and Maxillofacial Prosthodontics Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.

Restorative Sciences & Biomaterials, Boston University, Boston, USA.

出版信息

BMC Oral Health. 2024 Aug 10;24(1):929. doi: 10.1186/s12903-024-04695-8.

Abstract

BACKGROUND

To evaluate the flexural strength of digitally milled and printed denture base materials.

METHODS

The materials tested were Lucitone 199 denture base disc (Dentsply Sirona), AvaDent denture base puck (AvaDent), KeyMill denture base disc (Keystone), Lucitone digital print denture base resin (Dentsply Sirona), Formlab denture base resin (Formlabs), and Dentca base resin II (Dentca). Sixty bar-shaped specimens of each material were prepared for flexural strength testing and were divided into five groups: control, thermocycled, fatigue cycled, and repair using two different materials. The flexural strength and modulus were tested using a 3-point bend test performed on an Instron Universal Testing Machine with a 1kN load cell. The specimens were centered under a loading apparatus with a perpendicular alignment. The loading rate was a crosshead speed of 0.5 mm/min. Each specimen was loaded with a force until failure occurred. A one-way ANOVA test was used to analyze the data, followed by Tukey's HSD test (α = 0.05).

RESULTS

The milled materials exhibited higher flexural strength than the printed materials. Thermocycling and fatigue reduce the flexural strengths of printed and milled materials. The repaired groups exhibited flexural strengths of 32.80% and 30.67% of the original flexural strengths of printed and milled materials, respectively. Nevertheless, the type of repair material affected the flexural strength of the printed materials; the composite resin exhibited higher flexural strength values than the acrylic resin.

CONCLUSIONS

The milled denture base materials showed higher flexural strength than the printed ones.

摘要

背景

评估数字化铣削和打印义齿基托材料的弯曲强度。

方法

测试的材料有 Lucitone 199 义齿基托盘(登士柏西诺德)、AvaDent 义齿基托球(AvaDent)、KeyMill 义齿基托盘(Keystone)、Lucitone 数字打印义齿基托树脂(登士柏西诺德)、Formlab 义齿基托树脂(Formlabs)和 Dentca 基托树脂 II(Dentca)。每种材料制备 60 个条形试件用于弯曲强度测试,并分为 5 组:对照组、热循环组、疲劳循环组和使用两种不同材料修复组。使用配备 1kN 负载单元的 Instron 万能试验机进行三点弯曲试验测试弯曲强度和模量。将试件置于加载装置中心,垂直对齐。加载速度为 0.5mm/min 的十字头速度。对每个试件加载力,直至试件破坏。采用单向方差分析(ANOVA)对数据进行分析,然后采用 Tukey 的 HSD 检验(α=0.05)。

结果

铣削材料的弯曲强度高于打印材料。热循环和疲劳降低了打印和铣削材料的弯曲强度。修复组的弯曲强度分别为打印和铣削材料原始弯曲强度的 32.80%和 30.67%。然而,修复材料的类型影响了打印材料的弯曲强度;复合材料的弯曲强度值高于丙烯酸树脂。

结论

铣削义齿基托材料的弯曲强度高于打印材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0af7/11317006/c9f5ca272053/12903_2024_4695_Fig1_HTML.jpg

相似文献

1
Comparison of the flexural strength of printed and milled denture base materials.
BMC Oral Health. 2024 Aug 10;24(1):929. doi: 10.1186/s12903-024-04695-8.
2
Flexural Properties and Hardness of CAD-CAM Denture Base Materials.
J Prosthodont. 2023 Apr;32(4):318-324. doi: 10.1111/jopr.13535. Epub 2022 May 30.
4
6
Effect of thermal cycling on the flexure strength of CAD-CAM denture base materials: An in vitro study.
J Prosthet Dent. 2024 Sep;132(3):645.e1-645.e7. doi: 10.1016/j.prosdent.2024.07.005. Epub 2024 Jul 15.
7
In Vitro Analysis of Shear Stress: CAD Milled vs Printed Denture Base Resins with Bonded Denture Tooth.
J Prosthodont. 2023 Apr;32(S1):29-37. doi: 10.1111/jopr.13552. Epub 2022 Jun 27.
8
Translucency parameter and color masking ability of CAD-CAM denture base materials against metal substrates.
J Prosthodont. 2023 Apr;32(S1):61-67. doi: 10.1111/jopr.13581. Epub 2022 Aug 17.
9
Repair strength of hypoallergenic denture base materials.
J Prosthet Dent. 2008 Oct;100(4):292-301. doi: 10.1016/S0022-3913(08)60209-7.
10
Effect of repair resin type and surface treatment on the repair strength of heat-polymerized denture base resin.
J Prosthet Dent. 2014 Jan;111(1):71-8. doi: 10.1016/j.prosdent.2013.09.007. Epub 2013 Oct 22.

本文引用的文献

1
3D printing restorative materials using a stereolithographic technique: a systematic review.
Dent Mater. 2021 Feb;37(2):336-350. doi: 10.1016/j.dental.2020.11.030. Epub 2021 Jan 19.
2
3D printed complete removable dental prostheses: a narrative review.
BMC Oral Health. 2020 Nov 27;20(1):343. doi: 10.1186/s12903-020-01328-8.
3
Comparison of Mechanical Properties of 3D-Printed, CAD/CAM, and Conventional Denture Base Materials.
J Prosthodont. 2020 Jul;29(6):524-528. doi: 10.1111/jopr.13175. Epub 2020 Apr 20.
4
Assessment of CAD-CAM polymers for digitally fabricated complete dentures.
J Prosthet Dent. 2021 Jan;125(1):175-181. doi: 10.1016/j.prosdent.2019.12.008. Epub 2020 Feb 14.
7
Flexural strength of denture base acrylic resins processed by conventional and CAD-CAM methods.
J Prosthet Dent. 2020 Apr;123(4):641-646. doi: 10.1016/j.prosdent.2019.03.010. Epub 2019 Jul 26.
8
Effect of layering gingiva-shade composite resin on the strength of denture base polymers.
J Prosthet Dent. 2019 Aug;122(2):153.e1-153.e8. doi: 10.1016/j.prosdent.2019.05.018. Epub 2019 Jul 17.
9
Effect of Repair Gap Width on the Strength of Denture Repair: An In Vitro Comparative Study.
J Prosthodont. 2019 Jul;28(6):684-691. doi: 10.1111/jopr.13091. Epub 2019 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验