Suppr超能文献

基于深度学习的眼部疾病检测(细粒度图像分类)应用于眼部B超图像

Ocular Disease Detection with Deep Learning (Fine-Grained Image Categorization) Applied to Ocular B-Scan Ultrasound Images.

作者信息

Ye Xin, He Shucheng, Dan Ruilong, Yang Shangchao, Xv Jiahao, Lu Yang, Wu Bole, Zhou Congying, Xu Han, Yu Jiafeng, Xie Wenbin, Wang Yaqi, Shen Lijun

机构信息

Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.

Bijie Hospital of Zhejiang Provincial People's Hospital, Bijie, Guizhou, China.

出版信息

Ophthalmol Ther. 2024 Oct;13(10):2645-2659. doi: 10.1007/s40123-024-01009-7. Epub 2024 Aug 11.

Abstract

INTRODUCTION

The aim of this work is to develop a deep learning (DL) system for rapidly and accurately screening for intraocular tumor (IOT), retinal detachment (RD), vitreous hemorrhage (VH), and posterior scleral staphyloma (PSS) using ocular B-scan ultrasound images.

METHODS

Ultrasound images from five clinically confirmed categories, including vitreous hemorrhage, retinal detachment, intraocular tumor, posterior scleral staphyloma, and normal eyes, were used to develop and evaluate a fine-grained classification system (the Dual-Path Lesion Attention Network, DPLA-Net). Images were derived from five centers scanned by different sonographers and divided into training, validation, and test sets in a ratio of 7:1:2. Two senior ophthalmologists and four junior ophthalmologists were recruited to evaluate the system's performance.

RESULTS

This multi-center cross-sectional study was conducted in six hospitals in China. A total of 6054 ultrasound images were collected; 4758 images were used for the training and validation of the system, and 1296 images were used as a testing set. DPLA-Net achieved a mean accuracy of 0.943 in the testing set, and the area under the curve was 0.988 for IOT, 0.997 for RD, 0.994 for PSS, 0.988 for VH, and 0.993 for normal. With the help of DPLA-Net, the accuracy of the four junior ophthalmologists improved from 0.696 (95% confidence interval [CI] 0.684-0.707) to 0.919 (95% CI 0.912-0.926, p < 0.001), and the time used for classifying each image reduced from 16.84 ± 2.34 s to 10.09 ± 1.79 s.

CONCLUSIONS

The proposed DPLA-Net showed high accuracy for screening and classifying multiple ophthalmic diseases using B-scan ultrasound images across mutiple centers. Moreover, the system can promote the efficiency of classification by ophthalmologists.

摘要

引言

本研究旨在开发一种深度学习(DL)系统,用于使用眼部B超超声图像快速、准确地筛查眼内肿瘤(IOT)、视网膜脱离(RD)、玻璃体积血(VH)和后巩膜葡萄肿(PSS)。

方法

使用来自五个临床确诊类别的超声图像,包括玻璃体积血、视网膜脱离、眼内肿瘤、后巩膜葡萄肿和正常眼睛,来开发和评估一个细粒度分类系统(双路径病变注意力网络,DPLA-Net)。图像来自五个由不同超声检查人员扫描的中心,并按照7:1:2的比例分为训练集、验证集和测试集。招募了两名资深眼科医生和四名初级眼科医生来评估该系统的性能。

结果

这项多中心横断面研究在中国的六家医院进行。共收集了6054张超声图像;4758张图像用于系统的训练和验证,1296张图像用作测试集。DPLA-Net在测试集中的平均准确率为0.943,IOT的曲线下面积为0.988,RD为0.997,PSS为0.994,VH为0.988,正常为0.993。在DPLA-Net的帮助下,四名初级眼科医生的准确率从0.696(95%置信区间[CI]0.684-0.707)提高到0.919(95%CI 0.912-0.926,p<0.001),并且分类每张图像所用的时间从16.84±2.34秒减少到10.09±1.79秒。

结论

所提出的DPLA-Net在多个中心使用B超超声图像筛查和分类多种眼科疾病方面显示出高准确率。此外,该系统可以提高眼科医生的分类效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca35/11408435/629625d19d73/40123_2024_1009_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验