Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore.
Department of Radiology, Weill Cornell Medicine, New York, New York, USA.
Ultrasound Med Biol. 2022 Dec;48(12):2430-2441. doi: 10.1016/j.ultrasmedbio.2022.06.010. Epub 2022 Sep 10.
The aim of this study was to develop an eyewall curvature- and axial length (AxL)-based algorithm to automate detection (clinician-free) of staphyloma ridge and apex locations using ultrasound (US). Forty-six individuals (with emmetropia, high myopia or pathologic myopia) were enrolled in this study (AxL range: 22.3-39.3 mm), yielding 130 images in total. An intensity-based segmentation algorithm automatically tracked the posterior eyewall, calculating the posterior eyewall local curvature (K) and distance (L) to the transducer and the location of the staphyloma apex. By use of the area under the receiver operator characteristic (AUROC) curve to evaluate the diagnostic ability of eight local statistics derived from K, L and AxL, the algorithm successfully quantified non-uniformity of eye shape with an AUROC > 0.70 for most K-based parameters. The performance of binary classification (staphyloma absence vs. presence) was assessed with the best classifier (the combination of AxL, standard deviation of K and standard deviation of L) yielding a diagnostic validation performance of 0.897, which was comparable to the diagnostic performance of junior clinicians. The staphyloma apex was localized with an average error of 1.35 ± 1.34 mm. Combined with the real-time data acquisition capabilities of US, this method can be employed as a screening tool for clinician-free in vivo staphyloma detection.
本研究旨在开发一种基于眼环曲率和轴向长度(AxL)的算法,以使用超声(US)自动检测(无需临床医生参与)葡萄肿脊和顶点位置。本研究纳入了 46 名个体(正视眼、高度近视或病理性近视),共获得 130 张图像。基于强度的分割算法自动跟踪后眼环,计算后眼环的局部曲率(K)和到换能器的距离(L)以及葡萄肿顶点的位置。通过使用接收者操作特征(ROC)曲线下的面积(AUROC)来评估 K、L 和 AxL 衍生的八个局部统计量的诊断能力,该算法成功地量化了眼形的不均匀性,大多数基于 K 的参数的 AUROC 大于 0.70。使用最佳分类器(AxL、K 的标准差和 L 的标准差的组合)对二分类(葡萄肿缺失与存在)的性能进行评估,诊断验证性能为 0.897,与初级临床医生的诊断性能相当。葡萄肿顶点的定位平均误差为 1.35±1.34mm。结合 US 的实时数据采集能力,该方法可作为无需临床医生参与的葡萄肿体内检测的筛查工具。