Suppr超能文献

联合碱-光催化刺激实现点击微生物驯化,促进氨氮去除。

Combined alkali-photocatalytic stimulation enables click microbial domestication for boosted ammonia nitrogen removal.

机构信息

East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200093, PR China.

Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Institute of Photochemistry and Photofunctional Materials (IPPM), University of Shanghai for Science and Technology, Shanghai 200093, PR China.

出版信息

J Hazard Mater. 2024 Oct 5;478:135417. doi: 10.1016/j.jhazmat.2024.135417. Epub 2024 Aug 5.

Abstract

Microbe-driven ammonia nitrogen removal plays a crucial role in the nitrogen cycle and wastewater treatment. However, the rational methods and mechanisms for boosting nitrogen conversion through microbial domestication are still limited. Herein, a combined alkali-photocatalytic stimulation strategy was developed to activate the Halomonas shizuishanensis DWK9 for efficient ammonia nitrogen removal. The strain DWK9 selected from saline-alkaline soil in Northwestern China possessed strong resistance to stress of saline-alkaline environment and free radicals, and was abundant in nitrogen conversion genes, thus is an ideal model for advanced microbial domestication. Bacterial in the combined alkali-photocatalytic stimulation group achieved a high ammonia nitrogen conversion rate of 67.5 %, 10 times outperforming the non-stimulated and single alkali/photocatalytic stimulation control groups. Morphology analysis revealed that the bacteria in the alkali-photocatalytic stimulated group formed a favorable structure for bioelectric transfer. Remarkably, the domesticated bacteria demonstrated improved electrochemical properties, including increased current capacity and lower overpotentials and impedance. Prokaryotic transcription genetic analysis together with qPCR analysis showed upregulation of denitrification-related metabolic pathway genes. A novel FAD dependent and NAD(P)H independent energy mode has been proposed. The universality and effectiveness of the as-developed combined alkali-photocatalytic microbial domestication strategy were further validated through indicator fish survival experiments. This work provides unprecedented degrees of freedom for the exploration of rational microbial engineering for optimized and controllable biogeochemical conversion.

摘要

微生物驱动的氨氮去除在氮循环和废水处理中起着至关重要的作用。然而,通过微生物驯化来促进氮转化的合理方法和机制仍然有限。在此,开发了一种组合碱-光催化刺激策略,以激活来自中国西北盐碱土壤的嗜盐单胞菌 DWK9 来实现高效的氨氮去除。该菌株 DWK9 具有较强的耐盐碱环境和自由基应激能力,且富含氮转化基因,因此是高级微生物驯化的理想模型。在组合碱-光催化刺激组中的细菌实现了高达 67.5%的高氨氮转化率,比未经刺激和单一碱/光催化刺激对照组高出 10 倍。形态分析表明,碱-光催化刺激组中的细菌形成了有利于生物电子转移的有利结构。值得注意的是,驯化后的细菌表现出改善的电化学性能,包括增加的电流容量和更低的过电位和阻抗。原核转录遗传分析和 qPCR 分析表明,与反硝化相关的代谢途径基因上调。提出了一种新的 FAD 依赖性和 NAD(P)H 非依赖性能量模式。通过指示鱼生存实验进一步验证了所开发的组合碱-光催化微生物驯化策略的普遍性和有效性。这项工作为探索合理的微生物工程以实现优化和可控的生物地球化学转化提供了前所未有的自由度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验