Bhaskar Ashima, Chawla Manbeena, Mehta Mansi, Parikh Pankti, Chandra Pallavi, Bhave Devayani, Kumar Dhiraj, Carroll Kate S, Singh Amit
International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America.
PLoS Pathog. 2014 Jan 30;10(1):e1003902. doi: 10.1371/journal.ppat.1003902. eCollection 2014 Jan.
Mycobacterium tuberculosis (Mtb) survives under oxidatively hostile environments encountered inside host phagocytes. To protect itself from oxidative stress, Mtb produces millimolar concentrations of mycothiol (MSH), which functions as a major cytoplasmic redox buffer. Here, we introduce a novel system for real-time imaging of mycothiol redox potential (EMSH ) within Mtb cells during infection. We demonstrate that coupling of Mtb MSH-dependent oxidoreductase (mycoredoxin-1; Mrx1) to redox-sensitive GFP (roGFP2; Mrx1-roGFP2) allowed measurement of dynamic changes in intramycobacterial EMSH with unprecedented sensitivity and specificity. Using Mrx1-roGFP2, we report the first quantitative measurements of EMSH in diverse mycobacterial species, genetic mutants, and drug-resistant patient isolates. These cellular studies reveal, for the first time, that the environment inside macrophages and sub-vacuolar compartments induces heterogeneity in EMSH of the Mtb population. Further application of this new biosensor demonstrates that treatment of Mtb infected macrophage with anti-tuberculosis (TB) drugs induces oxidative shift in EMSH , suggesting that the intramacrophage milieu and antibiotics cooperatively disrupt the MSH homeostasis to exert efficient Mtb killing. Lastly, we analyze the membrane integrity of Mtb cells with varied EMSH during infection and show that subpopulation with higher EMSH are susceptible to clinically relevant antibiotics, whereas lower EMSH promotes antibiotic tolerance. Together, these data suggest the importance of MSH redox signaling in modulating mycobacterial survival following treatment with anti-TB drugs. We anticipate that Mrx1-roGFP2 will be a major contributor to our understanding of redox biology of Mtb and will lead to novel strategies to target redox metabolism for controlling Mtb persistence.
结核分枝杆菌(Mtb)能在宿主吞噬细胞内遇到的氧化应激环境中存活。为了保护自身免受氧化应激,Mtb会产生毫摩尔浓度的巯基乙醇(MSH),它作为主要的细胞质氧化还原缓冲剂发挥作用。在此,我们引入了一种新系统,用于在感染过程中实时成像Mtb细胞内的巯基乙醇氧化还原电位(EMSH)。我们证明,将Mtb依赖MSH的氧化还原酶(巯基氧化还原蛋白-1;Mrx1)与氧化还原敏感的绿色荧光蛋白(roGFP2;Mrx1-roGFP2)偶联,能够以前所未有的灵敏度和特异性测量分枝杆菌内EMSH的动态变化。使用Mrx1-roGFP2,我们首次对多种分枝杆菌物种、基因变异体和耐药患者分离株中的EMSH进行了定量测量。这些细胞研究首次揭示,巨噬细胞和液泡下区室内部的环境会诱导Mtb群体EMSH的异质性。这种新型生物传感器的进一步应用表明,用抗结核(TB)药物治疗感染Mtb的巨噬细胞会诱导EMSH发生氧化变化,这表明巨噬细胞内环境和抗生素协同破坏MSH的稳态,从而有效杀死Mtb。最后,我们分析了感染期间具有不同EMSH的Mtb细胞的膜完整性,结果表明,EMSH较高的亚群对临床相关抗生素敏感,而较低的EMSH则促进抗生素耐受性。总之,这些数据表明MSH氧化还原信号在调节抗结核药物治疗后分枝杆菌的存活中具有重要作用。我们预计,Mrx1-roGFP2将极大地有助于我们理解Mtb的氧化还原生物学,并将引领针对氧化还原代谢的新策略,以控制Mtb的持续性。