Suppr超能文献

深度回波调制曲线模板映射:基于回波调制曲线建模的深度学习回波调制曲线模板映射。

DeepEMC-T mapping: Deep learning-enabled T mapping based on echo modulation curve modeling.

作者信息

Pei Haoyang, Shepherd Timothy M, Wang Yao, Liu Fang, Sodickson Daniel K, Ben-Eliezer Noam, Feng Li

机构信息

Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.

出版信息

Magn Reson Med. 2024 Dec;92(6):2707-2722. doi: 10.1002/mrm.30239. Epub 2024 Aug 11.

Abstract

PURPOSE

Echo modulation curve (EMC) modeling enables accurate quantification of T relaxation times in multi-echo spin-echo (MESE) imaging. The standard EMC-T mapping framework, however, requires sufficient echoes and cumbersome pixel-wise dictionary-matching steps. This work proposes a deep learning version of EMC-T mapping, called DeepEMC-T mapping, to efficiently estimate accurate T maps from fewer echoes.

METHODS

DeepEMC-T mapping was developed using a modified U-Net to estimate both T and proton density (PD) maps directly from MESE images. The network implements several new features to improve the accuracy of T/PD estimation. A total of 67 MESE datasets acquired in axial orientation were used for network training and evaluation. An additional 57 datasets acquired in coronal orientation with different scan parameters were used to evaluate the generalizability of the framework. The performance of DeepEMC-T mapping was evaluated in seven experiments.

RESULTS

Compared to the reference, DeepEMC-T mapping achieved T estimation errors from 1% to 11% and PD estimation errors from 0.4% to 1.5% with ten/seven/five/three echoes, which are more accurate than standard EMC-T mapping. By incorporating datasets acquired with different scan parameters and orientations for joint training, DeepEMC-T exhibits robust generalizability across varying imaging protocols. Increasing the echo spacing and including longer echoes improve the accuracy of parameter estimation. The new features proposed in DeepEMC-T mapping all enabled more accurate T estimation.

CONCLUSIONS

DeepEMC-T mapping enables simplified, efficient, and accurate T quantification directly from MESE images without dictionary matching. Accurate T estimation from fewer echoes allows for increased volumetric coverage and/or higher slice resolution without prolonging total scan times.

摘要

目的

回波调制曲线(EMC)建模能够在多回波自旋回波(MESE)成像中对T弛豫时间进行准确量化。然而,标准的EMC-T映射框架需要足够多的回波以及繁琐的逐像素字典匹配步骤。这项工作提出了一种深度学习版的EMC-T映射,即深度EMC-T映射,以从较少的回波中高效地估计准确的T映射。

方法

深度EMC-T映射是使用改进的U-Net开发的,用于直接从MESE图像估计T和质子密度(PD)映射。该网络实现了几个新特性以提高T/PD估计的准确性。总共67个轴向采集的MESE数据集用于网络训练和评估。另外57个采用不同扫描参数在冠状面采集的数据集用于评估该框架的通用性。在七个实验中评估了深度EMC-T映射的性能。

结果

与参考值相比,深度EMC-T映射在有十/七/五/三个回波时,T估计误差为1%至11%,PD估计误差为0.4%至1.5%,比标准EMC-T映射更准确。通过纳入不同扫描参数和方向采集的数据集进行联合训练,深度EMC-T在不同成像协议中表现出强大的通用性。增加回波间隔并纳入更长的回波可提高参数估计的准确性。深度EMC-T映射中提出的新特性均能实现更准确的T估计。

结论

深度EMC-T映射无需字典匹配即可直接从MESE图像中实现简化、高效且准确的T量化。从较少回波中准确估计T,可在不延长总扫描时间的情况下增加容积覆盖范围和/或提高切片分辨率。

相似文献

1
深度回波调制曲线模板映射:基于回波调制曲线建模的深度学习回波调制曲线模板映射。
Magn Reson Med. 2024 Dec;92(6):2707-2722. doi: 10.1002/mrm.30239. Epub 2024 Aug 11.
2
用于准确且可重现的横向(T)弛豫时间评估的定量平台。
NMR Biomed. 2021 Aug;34(8):e4537. doi: 10.1002/nbm.4537. Epub 2021 May 16.
3
简化磁共振指纹成像:基于深度学习的参数估计实现快速全脑覆盖。
Neuroimage. 2021 Sep;238:118237. doi: 10.1016/j.neuroimage.2021.118237. Epub 2021 Jun 5.
4
减轻多层面多回波自旋回波 T 映射中的层面间串扰。
Magn Reson Med. 2024 May;91(5):2089-2103. doi: 10.1002/mrm.29987. Epub 2023 Dec 29.
5
一种基于重叠回波分离平面成像和深度学习重建的同步多切片T映射框架。
Magn Reson Med. 2022 May;87(5):2239-2253. doi: 10.1002/mrm.29128. Epub 2022 Jan 11.
7
肌电回归深度信息神经网络(Myo-DINO)在神经肌肉疾病中快速磁共振参数映射。
Comput Methods Programs Biomed. 2024 Nov;256:108399. doi: 10.1016/j.cmpb.2024.108399. Epub 2024 Aug 28.
8
基于模型的 T 映射超分辨率重建。
Magn Reson Med. 2020 Mar;83(3):906-919. doi: 10.1002/mrm.27981. Epub 2019 Sep 13.
9
分析磁化传递(MT)对 T1 弛豫时间定量成像的影响。
Magn Reson Med. 2019 Jul;82(1):145-158. doi: 10.1002/mrm.27704. Epub 2019 Mar 12.
10
基于布洛赫模拟重建从多自旋回波数据中快速准确地进行T2映射。
Magn Reson Med. 2015 Feb;73(2):809-17. doi: 10.1002/mrm.25156. Epub 2014 Mar 19.

引用本文的文献

本文引用的文献

1
基于深度学习的前列腺常规加权磁共振成像的回顾性T2定量分析。
Front Radiol. 2023 Oct 11;3:1223377. doi: 10.3389/fradi.2023.1223377. eCollection 2023.
2
使用 MRI T 弛豫时间的精确映射探测下坡跑后的肌肉恢复情况。
Magn Reson Med. 2023 Nov;90(5):1990-2000. doi: 10.1002/mrm.29765. Epub 2023 Jun 22.
3
基于深度学习辅助 Look-Locker 反转恢复 MRI 的快速 3D T 映射。
Magn Reson Med. 2023 Aug;90(2):569-582. doi: 10.1002/mrm.29672. Epub 2023 May 1.
5
磁共振图像上脑病变的视觉与计算机辅助检测的心理物理学评估。
J Magn Reson Imaging. 2023 Aug;58(2):642-649. doi: 10.1002/jmri.28559. Epub 2022 Dec 9.
6
心肌疾病的 T2 映射:全面综述。
J Cardiovasc Magn Reson. 2022 Jun 6;24(1):33. doi: 10.1186/s12968-022-00866-0.
7
黄金角度放射状 MRI:基础、进展与应用。
J Magn Reson Imaging. 2022 Jul;56(1):45-62. doi: 10.1002/jmri.28187. Epub 2022 Apr 9.
8
T2 映射用于前列腺病变的特征描述。
World J Urol. 2022 Jun;40(6):1455-1461. doi: 10.1007/s00345-022-03991-8. Epub 2022 Mar 31.
9
基于字典压缩和梯度下降搜索算法的字典基 T1 弛豫图的加速重建。
Magn Reson Imaging. 2022 Apr;87:56-66. doi: 10.1016/j.mri.2021.12.006. Epub 2021 Dec 30.
10
基于数据驱动的髓鞘水成像算法:基于空间全局组织特征识别探索亚体素分区
Magn Reson Med. 2022 May;87(5):2521-2535. doi: 10.1002/mrm.29125. Epub 2021 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验