Suppr超能文献

基于径向涡轮自旋回波数据深度学习重建的加速自由呼吸腹部T2映射

Accelerated free-breathing abdominal T2 mapping with deep learning reconstruction of radial turbo spin-echo data.

作者信息

Toner Brian, Arberet Simon, Zhang Shu, Han Fei, Ahanonu Eze, Goerke Ute, Johnson Kevin, Abouelfetouh Zeyad, Codreanu Ion, Sridhar Sajeev, Arif-Tiwari Hina, Deshpande Vibhas, Martin Diego R, Nadar Mariappan, Altbach Maria I, Bilgin Ali

机构信息

Program in Applied Mathematics, The University of Arizona, Tucson, Arizona, USA.

Digital Technology & Innovation, Siemens Healthineers, Princeton, New Jersey, USA.

出版信息

Magn Reson Med. 2025 Aug 5. doi: 10.1002/mrm.70017.

Abstract

PURPOSE

To accelerate respiratory triggered free-breathing T2 mapping of the abdomen while maintaining high-quality anatomical images, accurate T2 maps, and fast reconstruction times.

METHODS

We developed a flexible deep learning framework that can be trained in a fully supervised manner to improve T2-weighted images or in a self-supervised manner to reconstruct T2 maps.

RESULTS

For retrospectively undersampled data, anatomical images and T2 maps reconstructed by the proposed deep learning method demonstrated reduced voxel-wise error compared to existing traditional and compressed sensing techniques. Reconstruction times were approximately 1 s per slice, significantly faster than existing compressed sensing techniques. Prospectively undersampled data were also acquired to assess the model.

CONCLUSION

The proposed deep-learning framework reconstructed high-quality anatomical images and accurate T2 maps from datasets undersampled to only 160 total radial views (5 views per echo time), enabling full liver coverage in under three minutes on average with per-slice reconstruction times of approximately one second.

摘要

目的

在保持高质量解剖图像、准确的T2图谱以及快速重建时间的同时,加速腹部呼吸触发自由呼吸T2图谱成像。

方法

我们开发了一个灵活的深度学习框架,该框架可以通过全监督方式进行训练以改善T2加权图像,或者通过自监督方式进行训练以重建T2图谱。

结果

对于回顾性欠采样数据,与现有的传统和压缩感知技术相比,通过所提出的深度学习方法重建的解剖图像和T2图谱显示出体素级误差降低。重建时间约为每切片1秒,明显快于现有的压缩感知技术。还采集了前瞻性欠采样数据以评估该模型。

结论

所提出的深度学习框架能够从仅欠采样到总共160个径向视图(每个回波时间5个视图)的数据集中重建高质量的解剖图像和准确的T2图谱,平均不到三分钟即可实现全肝覆盖,每切片重建时间约为一秒。

相似文献

4
6
High-Resolution 3T MRI of the Membranous Labyrinth Using Deep Learning Reconstruction.
AJNR Am J Neuroradiol. 2025 Aug 28. doi: 10.3174/ajnr.A8989.

本文引用的文献

3
Deep learning for accelerated and robust MRI reconstruction.深度学习在加速和稳健 MRI 重建中的应用。
MAGMA. 2024 Jul;37(3):335-368. doi: 10.1007/s10334-024-01173-8. Epub 2024 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验