School of Information Science and Engineering, Yunnan University, Kunming 650500, China.
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae395.
Influenza viruses rapidly evolve to evade previously acquired human immunity. Maintaining vaccine efficacy necessitates continuous monitoring of antigenic differences among strains. Traditional serological methods for assessing these differences are labor-intensive and time-consuming, highlighting the need for efficient computational approaches. This paper proposes MetaFluAD, a meta-learning-based method designed to predict quantitative antigenic distances among strains. This method models antigenic relationships between strains, represented by their hemagglutinin (HA) sequences, as a weighted attributed network. Employing a graph neural network (GNN)-based encoder combined with a robust meta-learning framework, MetaFluAD learns comprehensive strain representations within a unified space encompassing both antigenic and genetic features. Furthermore, the meta-learning framework enables knowledge transfer across different influenza subtypes, allowing MetaFluAD to achieve remarkable performance with limited data. MetaFluAD demonstrates excellent performance and overall robustness across various influenza subtypes, including A/H3N2, A/H1N1, A/H5N1, B/Victoria, and B/Yamagata. MetaFluAD synthesizes the strengths of GNN-based encoding and meta-learning to offer a promising approach for accurate antigenic distance prediction. Additionally, MetaFluAD can effectively identify dominant antigenic clusters within seasonal influenza viruses, aiding in the development of effective vaccines and efficient monitoring of viral evolution.
流感病毒迅速进化以逃避人类先前获得的免疫力。为了保持疫苗的功效,有必要持续监测菌株之间的抗原差异。评估这些差异的传统血清学方法既费力又费时,这凸显了需要有效的计算方法。本文提出了 MetaFluAD,这是一种基于元学习的方法,旨在预测菌株之间的定量抗原距离。该方法将代表菌株的血凝素 (HA) 序列的抗原关系建模为加权属性网络。MetaFluAD 采用基于图神经网络 (GNN) 的编码器和强大的元学习框架,在一个统一的空间中学习全面的菌株表示,该空间包含抗原和遗传特征。此外,元学习框架能够在不同的流感亚型之间进行知识转移,从而使 MetaFluAD 能够在数据有限的情况下实现出色的性能。MetaFluAD 在各种流感亚型(包括 A/H3N2、A/H1N1、A/H5N1、B/Victoria 和 B/Yamagata)中表现出出色的性能和整体稳健性。MetaFluAD 综合了基于 GNN 的编码和元学习的优势,为准确预测抗原距离提供了一种有前途的方法。此外,MetaFluAD 可以有效地识别季节性流感病毒中的主要抗原簇,有助于开发有效的疫苗和有效地监测病毒进化。