State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
Editorial Office of Journal of Yunnan University (Natural Sciences Edition), Yunnan University, Kunming 650091, China.
Comput Math Methods Med. 2021 Oct 16;2021:9997669. doi: 10.1155/2021/9997669. eCollection 2021.
Modeling antigenic variation in influenza (flu) virus A H3N2 using amino acid sequences is a promising approach for improving the prediction accuracy of immune efficacy of vaccines and increasing the efficiency of vaccine screening. Antigenic drift and antigenic jump/shift, which arise from the accumulation of mutations with small or moderate effects and from a major, abrupt change with large effects on the surface antigen hemagglutinin (HA), respectively, are two types of antigenic variation that facilitate immune evasion of flu virus A and make it challenging to predict the antigenic properties of new viral strains. Despite considerable progress in modeling antigenic variation based on the amino acid sequences, few studies focus on the deep learning framework which could be most suitable to be applied to this task. Here, we propose a novel deep learning approach that incorporates a convolutional neural network (CNN) and bidirectional long-short-term memory (BLSTM) neural network to predict antigenic variation. In this approach, CNN extracts the complex local contexts of amino acids while the BLSTM neural network captures the long-distance sequence information. When compared to the existing methods, our deep learning approach achieves the overall highest prediction performance on the validation dataset, and more encouragingly, it achieves prediction agreements of 99.20% and 96.46% for the strains in the forthcoming year and in the next two years included in an existing set of chronological amino acid sequences, respectively. These results indicate that our deep learning approach is promising to be applied to antigenic variation prediction of flu virus A H3N2.
使用氨基酸序列对流感(流感)病毒 A H3N2 进行抗原变异建模是一种很有前途的方法,可以提高疫苗免疫效果预测的准确性,提高疫苗筛选的效率。抗原漂移和抗原跳跃/转变,分别是由于表面抗原血凝素(HA)上的小或中等效应的突变积累和大效应的主要、突然变化引起的两种抗原变异类型,这两种抗原变异使流感病毒 A 逃避免疫,并使其难以预测新病毒株的抗原特性。尽管在基于氨基酸序列的抗原变异建模方面取得了相当大的进展,但很少有研究关注最适合应用于这项任务的深度学习框架。在这里,我们提出了一种新的深度学习方法,该方法结合了卷积神经网络(CNN)和双向长短期记忆(BLSTM)神经网络来预测抗原变异。在这种方法中,CNN 提取氨基酸的复杂局部上下文,而 BLSTM 神经网络捕获长距离序列信息。与现有方法相比,我们的深度学习方法在验证数据集上实现了整体最高的预测性能,更令人鼓舞的是,它对现有按年代顺序排列的氨基酸序列集中包括的下一年和未来两年的菌株的预测一致性分别达到了 99.20%和 96.46%。这些结果表明,我们的深度学习方法有望应用于流感病毒 A H3N2 的抗原变异预测。