Suppr超能文献

基于卷积神经网络的流感病毒抗原距离无预测预测方法。

Convolutional Neural Network Based Approach to in Silico Non-Anticipating Prediction of Antigenic Distance for Influenza Virus.

机构信息

Krasovsky Institute of Mathematics and Mechanics, 620990 Ekaterinburg, Russia.

出版信息

Viruses. 2020 Sep 12;12(9):1019. doi: 10.3390/v12091019.

Abstract

Evaluation of the antigenic similarity degree between the strains of the influenza virus is highly important for vaccine production. The conventional method used to measure such a degree is related to performing the immunological assays of hemagglutinin inhibition. Namely, the antigenic distance between two strains is calculated on the basis of HI assays. Usually, such distances are visualized by using some kind of antigenic cartography method. The known drawback of the HI assay is that it is rather time-consuming and expensive. In this paper, we propose a novel approach for antigenic distance approximation based on deep learning in the feature spaces induced by hemagglutinin protein sequences and Convolutional Neural Networks (CNNs). To apply a CNN to compare the protein sequences, we utilize the encoding based on the physical and chemical characteristics of amino acids. By varying (hyper)parameters of the CNN architecture design, we find the most robust network. Further, we provide insight into the relationship between approximated antigenic distance and antigenicity by evaluating the network on the HI assay database for the H1N1 subtype. The results indicate that the best-trained network gives a high-precision approximation for the ground-truth antigenic distances, and can be used as a good exploratory tool in practical tasks.

摘要

评估流感病毒株之间的抗原相似性程度对于疫苗生产非常重要。传统的测量方法与血凝抑制免疫测定有关。也就是说,根据 HI 测定来计算两株之间的抗原距离。通常,使用某种抗原制图方法来可视化这些距离。HI 测定的已知缺点是它非常耗时且昂贵。在本文中,我们提出了一种基于血凝素蛋白序列和卷积神经网络(CNN)诱导的特征空间的深度学习的抗原距离近似的新方法。为了在蛋白质序列上应用 CNN,我们利用基于氨基酸理化特性的编码。通过改变 CNN 架构设计的(超)参数,我们找到了最稳健的网络。此外,我们通过在 H1N1 亚型的 HI 测定数据库上评估网络,深入了解近似抗原距离与抗原性之间的关系。结果表明,训练最好的网络可以对真实的抗原距离进行高精度的近似,并且可以作为实际任务中的一个很好的探索性工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验