Chauhan Poonam, Kumar Ashok
Department of Physics, Central University of Punjab, VPO Ghudda, Bathinda 151401, India.
ACS Omega. 2024 Jul 26;9(31):33723-33734. doi: 10.1021/acsomega.4c02874. eCollection 2024 Aug 6.
In this study, we systematically investigate the piezoelectric, thermoelectric, and photocatalytic properties of novel two-dimensional Janus arsenic chalcohalide monolayers, AsXX' (X = S and Se and X' = Cl, Br, and I) using density functional theory. The positive phonon spectra and ab initio molecular dynamics simulation plots indicate these monolayers to be dynamically and thermally stable. The mechanical stability of these monolayers is confirmed by a nonzero elastic constant ( ), Young's modulus ( ), and Poisson ratio (ν). These monolayers exhibit strong out-of-plane piezoelectric coefficients, making them candidate materials for piezoelectric devices. Our calculated results indicate that these monolayers have a low lattice thermal conductivity (κ) and high thermoelectric figure of merit () up to 1.51 at 800 K. These monolayers have an indirect bandgap, high carrier mobility, and strong visible light absorption spectra. Furthermore, the AsSCl, AsSBr, and AsSeI monolayers exhibit appropriate band alignment for water splitting. The calculated value of the corrected solar-to-hydrogen conversion efficiency can reach up to 19%. The nonadiabatic molecular dynamics simulations reveal the prolonged electron-hole recombination rates of 1.52 0.98, and 0.67 ns for AsSCl, AsSBr, and AsSeI monolayers, respectively. Our findings demonstrate these monolayers to be potential candidates in energy-harvesting fields.
在本研究中,我们使用密度泛函理论系统地研究了新型二维Janus砷卤硫化物单层AsXX'(X = S和Se,X' = Cl、Br和I)的压电、热电和光催化性能。正声子谱和从头算分子动力学模拟图表明这些单层在动力学和热学上是稳定的。这些单层的机械稳定性通过非零弹性常数( )、杨氏模量( )和泊松比(ν)得到证实。这些单层表现出很强的面外压电系数,使其成为压电器件的候选材料。我们的计算结果表明,这些单层具有低晶格热导率(κ),并且在800 K时热电优值( )高达1.51。这些单层具有间接带隙、高载流子迁移率和强可见光吸收光谱。此外,AsSCl、AsSBr和AsSeI单层在水分解方面表现出合适的能带排列。校正后的太阳能到氢能转换效率的计算值可达19%。非绝热分子动力学模拟显示,AsSCl、AsSBr和AsSeI单层的电子 - 空穴复合率分别延长至1.52、0.98和0.67 ns。我们的研究结果表明这些单层是能量收集领域的潜在候选材料。