Suppr超能文献

爱荷华脑行为建模工具包:一个用于成像行为和病变缺陷关系的推理与预测建模的开源MATLAB工具。

Iowa Brain-Behavior Modeling Toolkit: An Open-Source MATLAB Tool for Inferential and Predictive Modeling of Imaging-Behavior and Lesion-Deficit Relationships.

作者信息

Griffis Joseph C, Bruss Joel, Acker Stein F, Shea Carrie, Tranel Daniel, Boes Aaron D

出版信息

bioRxiv. 2024 Oct 17:2024.07.31.606046. doi: 10.1101/2024.07.31.606046.

Abstract

The traditional analytical framework taken by neuroimaging studies in general, and lesion-behavior studies in particular, has been inferential in nature and has focused on identifying and interpreting statistically significant effects within the sample under study. While this framework is well-suited for hypothesis testing approaches, achieving the modern goal of precision medicine requires a different framework that is predictive in nature and that focuses on maximizing the predictive power of models and evaluating their ability to generalize beyond the data that were used to train them. However, few tools exist to support the development and evaluation of predictive models in the context of neuroimaging or lesion-behavior research, creating an obstacle to the widespread adoption of predictive modeling approaches in the field. Further, existing tools for lesion-behavior analysis are often unable to accommodate categorical outcome variables and often impose restrictions on the predictor data. Researchers therefore often must use different software packages and analytical approaches depending on whether they are addressing a classification vs. regression problem and on whether their predictor data correspond to binary lesion images, continuous lesion-network images, connectivity matrices, or other data modalities. To address these limitations, we have developed a MATLAB software toolkit that supports both inferential and predictive modeling frameworks, accommodates both classification and regression problems, and does not impose restrictions on the modality of the predictor data. The toolkit features both a graphical user interface and scripting interface, includes implementations of multiple mass-univariate, multivariate, and machine learning models, features built-in and customizable routines for hyper-parameter optimization, cross-validation, model stacking, and significance testing, and automatically generates text-based descriptions of key methodological details and modeling results to improve reproducibility and minimize errors in the reporting of methods and results. Here, we provide an overview and discussion of the toolkit features and demonstrate its functionality by applying it to the question of how expressive and receptive language impairments relate to lesion location, structural disconnection, and functional network disruption in a large sample of patients with left hemispheric brain lesions. We find that impairments in expressive vs. receptive language are most strongly associated with left lateral prefrontal and left posterior temporal/parietal damage, respectively. We also find that impairments in expressive vs. receptive language are associated with partially overlapping patterns of fronto-temporal structural disconnection, and that the associated functional networks are also similar. Importantly, we find that lesion location and lesion-derived network measures are highly predictive of both types of impairment, with predictions from models trained on these measures explaining ~30-40% of the variance on average when applied to data from patients not used to train the models. We have made the toolkit publicly available, and we have included a comprehensive set of tutorial notebooks to support new users in applying the toolkit in their studies.

摘要

一般而言,神经影像学研究,尤其是病变-行为研究采用的传统分析框架本质上是推断性的,并且专注于识别和解释所研究样本内具有统计学意义的效应。虽然这个框架非常适合假设检验方法,但要实现精准医学的现代目标,则需要一个本质上具有预测性的不同框架,该框架专注于最大化模型的预测能力,并评估其在用于训练的数据之外进行泛化的能力。然而,在神经影像学或病变-行为研究背景下,支持预测模型开发和评估的工具很少,这为该领域广泛采用预测建模方法造成了障碍。此外,现有的病变-行为分析工具通常无法处理分类结果变量,并且常常对预测数据施加限制。因此,研究人员通常必须根据他们处理的是分类问题还是回归问题,以及他们的预测数据是对应于二元病变图像、连续病变网络图像、连通性矩阵还是其他数据模式,使用不同的软件包和分析方法。为了解决这些限制,我们开发了一个MATLAB软件工具包,它支持推断性和预测性建模框架,能处理分类和回归问题,并且不对预测数据的模式施加限制。该工具包具有图形用户界面和脚本接口,包括多个单变量、多变量和机器学习模型的实现,具有用于超参数优化、交叉验证、模型堆叠和显著性检验的内置且可定制的例程,并自动生成基于文本的关键方法细节和建模结果描述,以提高可重复性并尽量减少方法和结果报告中的错误。在这里,我们对工具包的功能进行概述和讨论,并通过将其应用于一个关于表达性和接受性语言障碍如何与左半球脑损伤的大样本患者的病变位置、结构断开和功能网络破坏相关的问题,展示其功能。我们发现,表达性语言障碍与接受性语言障碍分别与左侧前额叶和左侧颞叶/顶叶后部损伤最密切相关。我们还发现,表达性语言障碍与接受性语言障碍与额颞叶结构断开的部分重叠模式相关,并且相关的功能网络也相似。重要的是,我们发现病变位置和源自病变的网络测量对这两种类型的障碍都具有高度预测性,当将基于这些测量训练的模型应用于未用于训练模型的患者数据时,模型预测平均可解释约30%-40%的方差。我们已将该工具包公开发布,并包含了一套全面的教程笔记本,以支持新用户在其研究中应用该工具包。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验