Suppr超能文献

爱荷华脑行为建模工具包:一个用于成像行为和病变缺陷关系的推理与预测建模的开源MATLAB工具。

Iowa Brain-Behavior Modeling Toolkit: An Open-Source MATLAB Tool for Inferential and Predictive Modeling of Imaging-Behavior and Lesion-Deficit Relationships.

作者信息

Griffis Joseph C, Bruss Joel, Acker Stein F, Shea Carrie, Tranel Daniel, Boes Aaron D

机构信息

Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

出版信息

Hum Brain Mapp. 2024 Dec 15;45(18):e70115. doi: 10.1002/hbm.70115.

Abstract

The traditional analytical framework taken by neuroimaging studies in general, and lesion-behavior studies in particular, has been inferential in nature and has focused on identifying and interpreting statistically significant effects within the sample under study. While this framework is well-suited for hypothesis testing approaches, achieving the modern goal of precision medicine requires a different framework that is predictive in nature and that focuses on maximizing the predictive power of models and evaluating their ability to generalize beyond the data that were used to train them. However, few tools exist to support the development and evaluation of predictive models in the context of neuroimaging or lesion-behavior research, creating an obstacle to the widespread adoption of predictive modeling approaches in the field. Further, existing tools for lesion-behavior analysis are often unable to accommodate categorical outcome variables and often impose restrictions on the predictor data. Researchers therefore often must use different software packages and analytical approaches depending on (a) whether they are addressing a classification versus regression problem and (b) whether their predictor data correspond to binary lesion images, continuous lesion-network images, connectivity matrices, or other data modalities. To address these limitations, we have developed a MATLAB software toolkit that supports both inferential and predictive modeling frameworks, accommodates both classification and regression problems, and does not impose restrictions on the modality of the predictor data. The toolkit features both a graphical user interface and scripting interface, includes implementations of multiple mass-univariate, multivariate, and machine learning models, features built-in and customizable routines for hyper-parameter optimization, cross-validation, model stacking, and significance testing, and automatically generates text-based descriptions of key methodological details and modeling results to improve reproducibility and minimize errors in the reporting of methods and results. Here, we provide an overview and discussion of the toolkit's features and demonstrate its functionality by applying it to the question of how expressive and receptive language impairments relate to lesion location, structural disconnection, and functional network disruption in a large sample of patients with left hemispheric brain lesions. We find that impairments in expressive versus receptive language are most strongly associated with left lateral prefrontal and left posterior temporal/parietal damage, respectively. We also find that impairments in expressive vs. receptive language are associated with partially overlapping patterns of fronto-temporal structural disconnection and with similar functional networks. Importantly, we find that lesion location and lesion-derived network measures are highly predictive of both types of impairment, with predictions from models trained on these measures explaining ~30%-40% of the variance on average when applied to data from patients not used to train the models. We have made the toolkit publicly available, and we have included a comprehensive set of tutorial notebooks to support new users in applying the toolkit in their studies.

摘要

一般而言,神经影像学研究,尤其是脑损伤-行为研究采用的传统分析框架本质上是推理性的,专注于识别和解释所研究样本内具有统计学意义的效应。虽然这个框架非常适合假设检验方法,但要实现精准医学的现代目标,需要一个本质上具有预测性的不同框架,该框架专注于最大化模型的预测能力,并评估其在用于训练的数据之外进行泛化的能力。然而,在神经影像学或脑损伤-行为研究背景下,支持预测模型开发和评估的工具很少,这为该领域广泛采用预测建模方法造成了障碍。此外,现有的脑损伤-行为分析工具通常无法处理分类结果变量,并且常常对预测数据施加限制。因此,研究人员往往必须根据(a)他们处理的是分类问题还是回归问题,以及(b)他们的预测数据是对应于二元脑损伤图像、连续脑损伤网络图像、连接矩阵还是其他数据模式,使用不同的软件包和分析方法。为了解决这些限制,我们开发了一个MATLAB软件工具包,它支持推理性和预测性建模框架,能处理分类和回归问题,并且不对预测数据的模式施加限制。该工具包具有图形用户界面和脚本接口,包括多个单变量、多变量和机器学习模型的实现,具有用于超参数优化、交叉验证、模型堆叠和显著性检验的内置和可定制例程,并自动生成基于文本的关键方法细节和建模结果描述,以提高可重复性并最大限度减少方法和结果报告中的错误。在此,我们概述并讨论该工具包的功能,并通过将其应用于一个关于大量左半球脑损伤患者中表达性和接受性语言障碍如何与脑损伤位置、结构连接中断和功能网络破坏相关的问题,展示其功能。我们发现,表达性语言障碍与接受性语言障碍分别与左侧前额叶和左侧颞叶/顶叶后部损伤最密切相关。我们还发现,表达性与接受性语言障碍与额颞叶结构连接中断的部分重叠模式以及相似的功能网络相关。重要的是,我们发现脑损伤位置和源自脑损伤的网络测量对两种类型的障碍都具有高度预测性,当将基于这些测量训练的模型应用于未用于训练模型的患者数据时,模型预测平均可解释约30%-40%的方差。我们已将该工具包公开提供,并包含了一套全面的教程笔记本,以支持新用户在其研究中应用该工具包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5215/11665964/f06ef378239c/HBM-45-e70115-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验