Suppr超能文献

NeuroMark:一种基于自动和自适应 ICA 的流水线,用于识别可重复的 fMRI 脑疾病标志物。

NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders.

机构信息

School of Computer and Information Technology, Shanxi University, Taiyuan, China; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA.

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA.

出版信息

Neuroimage Clin. 2020;28:102375. doi: 10.1016/j.nicl.2020.102375. Epub 2020 Aug 11.

Abstract

Many mental illnesses share overlapping or similar clinical symptoms, confounding the diagnosis. It is important to systematically characterize the degree to which unique and similar changing patterns are reflective of brain disorders. Increasing sharing initiatives on neuroimaging data have provided unprecedented opportunities to study brain disorders. However, it is still an open question on replicating and translating findings across studies. Standardized approaches for capturing reproducible and comparable imaging markers are greatly needed. Here, we propose a pipeline based on the priori-driven independent component analysis, NeuroMark, which is capable of estimating brain functional network measures from functional magnetic resonance imaging (fMRI) data that can be used to link brain network abnormalities among different datasets, studies, and disorders. NeuroMark automatically estimates features adaptable to each individual subject and comparable across datasets/studies/disorders by taking advantage of the reliable brain network templates extracted from 1828 healthy controls as guidance. Four studies including 2442 subjects were conducted spanning six brain disorders (schizophrenia, autism spectrum disorder, mild cognitive impairment, Alzheimer's disease, bipolar disorder, and major depressive disorder) to evaluate validity of the proposed pipeline from different perspectives (replication of brain abnormalities, cross-study comparison, identification of subtle brain changes, and multi-disorder classification using identified biomarkers). Our results highlight that NeuroMark effectively identified replicated brain network abnormalities of schizophrenia across different datasets; revealed interesting neural clues on the overlap and specificity between autism and schizophrenia; demonstrated brain functional impairments present to varying degrees in mild cognitive impairments and Alzheimer's disease; and captured biomarkers that achieved good performance in classifying bipolar disorder and major depressive disorder.

摘要

许多精神疾病具有重叠或相似的临床症状,这给诊断带来了困难。系统地描述独特和相似的变化模式在多大程度上反映了大脑紊乱是很重要的。神经影像学数据的共享倡议不断增加,为研究大脑紊乱提供了前所未有的机会。然而,在复制和跨研究翻译发现方面,仍然存在一个悬而未决的问题。需要标准化的方法来捕捉可重复和可比的成像标志物。在这里,我们提出了一个基于先验驱动的独立成分分析的NeuroMark 管道,该管道能够从功能磁共振成像 (fMRI) 数据中估计大脑功能网络指标,这些指标可用于将不同数据集、研究和疾病中的大脑网络异常联系起来。NeuroMark 通过利用从 1828 名健康对照中提取的可靠大脑网络模板作为指导,自动估计适应每个个体的特征,并在数据集/研究/疾病之间具有可比性。进行了四项研究,涵盖了六个脑疾病(精神分裂症、自闭症谱系障碍、轻度认知障碍、阿尔茨海默病、双相情感障碍和重度抑郁症),从不同角度(脑异常的复制、跨研究比较、细微脑变化的识别以及使用鉴定的生物标志物进行多疾病分类)评估了所提出的管道的有效性。我们的结果突出表明,NeuroMark 有效地识别了不同数据集之间精神分裂症的重复脑网络异常;揭示了自闭症和精神分裂症之间重叠和特异性的有趣神经线索;证明了轻度认知障碍和阿尔茨海默病中存在不同程度的脑功能障碍;并捕获了在分类双相情感障碍和重度抑郁症方面表现良好的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9971/7509081/47ff72788bbe/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验