Genc Sila, Ball Gareth, Chamberland Maxime, Raven Erika P, Tax Chantal Mw, Ward Isobel, Yang Joseph Yuan-Mou, Palombo Marco, Jones Derek K
Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom.
Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
bioRxiv. 2024 Jul 30:2024.07.30.605934. doi: 10.1101/2024.07.30.605934.
Neuroanatomical changes to the cortex during adolescence have been well documented using MRI, revealing ongoing cortical thinning and volume loss with age. However, the underlying cellular mechanisms remain elusive with conventional neuroimaging. Recent advances in MRI hardware and new biophysical models of tissue informed by diffusion MRI data hold promise for identifying the cellular changes driving these morphological observations. This study used ultra-strong gradient MRI to obtain high-resolution, in vivo estimates of cortical neurite and soma microstructure in sample of typically developing children and adolescents. Cortical neurite signal fraction, attributed to neuronal and glial processes, increased with age (mean R =.53, p<3.3e-11, 11.91% increase over age), while apparent soma radius decreased (mean R =.48, p<4.4e-10, 1% decrease over age) across domain-specific networks. To complement these findings, developmental patterns of cortical gene expression in two independent post-mortem databases were analysed. This revealed increased expression of genes expressed in oligodendrocytes, and excitatory neurons, alongside a relative decrease in expression of genes expressed in astrocyte, microglia and endothelial cell-types. Age-related genes were significantly enriched in cortical oligodendrocytes, oligodendrocyte progenitors and Layer 5-6 neurons (p<.001) and prominently expressed in adolescence and young adulthood. The spatial and temporal alignment of oligodendrocyte cell-type gene expression with neurite and soma microstructural changes suggest that ongoing cortical myelination processes contribute to adolescent cortical development. These findings highlight the role of intra-cortical myelination in cortical maturation during adolescence and into adulthood.
利用磁共振成像(MRI)已充分记录了青春期皮质的神经解剖学变化,显示随着年龄增长皮质持续变薄和体积减小。然而,传统神经成像技术仍难以揭示其潜在的细胞机制。MRI硬件的最新进展以及基于扩散MRI数据的新组织生物物理模型,有望识别驱动这些形态学观察结果的细胞变化。本研究使用超强梯度MRI,对典型发育的儿童和青少年样本的皮质神经突和胞体微观结构进行高分辨率的体内估计。归因于神经元和胶质细胞突起的皮质神经突信号分数随年龄增加(平均R = 0.53,p < 3.3×10⁻¹¹,年龄增长11.91%),而跨领域特异性网络的表观胞体半径减小(平均R = 0.48,p < 4.4×10⁻¹⁰,年龄增长1%)。为补充这些发现,分析了两个独立的死后数据库中皮质基因表达的发育模式。这显示少突胶质细胞和兴奋性神经元中表达的基因表达增加,同时星形胶质细胞、小胶质细胞和内皮细胞类型中表达的基因表达相对减少。与年龄相关的基因在皮质少突胶质细胞、少突胶质前体细胞和第5 - 6层神经元中显著富集(p < 0.001),并在青春期和青年期显著表达。少突胶质细胞类型基因表达与神经突和胞体微观结构变化的时空一致性表明,持续的皮质髓鞘形成过程有助于青少年皮质发育。这些发现突出了皮质内髓鞘形成在青春期直至成年期皮质成熟中的作用。