CIBM Center for Biomedical Imaging, Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; School of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland.
CIBM Center for Biomedical Imaging, Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Neuroimage. 2022 Aug 1;256:119277. doi: 10.1016/j.neuroimage.2022.119277. Epub 2022 May 3.
Biophysical models of diffusion in white matter have been center-stage over the past two decades and are essentially based on what is now commonly referred to as the "Standard Model" (SM) of non-exchanging anisotropic compartments with Gaussian diffusion. In this work, we focus on diffusion MRI in gray matter, which requires rethinking basic microstructure modeling blocks. In particular, at least three contributions beyond the SM need to be considered for gray matter: water exchange across the cell membrane - between neurites and the extracellular space; non-Gaussian diffusion along neuronal and glial processes - resulting from structural disorder; and signal contribution from soma. For the first contribution, we propose Neurite Exchange Imaging (NEXI) as an extension of the SM of diffusion, which builds on the anisotropic Kärger model of two exchanging compartments. Using datasets acquired at multiple diffusion weightings (b) and diffusion times (t) in the rat brain in vivo, we investigate the suitability of NEXI to describe the diffusion signal in the gray matter, compared to the other two possible contributions. Our results for the diffusion time window 20-45 ms show minimal diffusivity time-dependence and more pronounced kurtosis decay with time, which is well fit by the exchange model. Moreover, we observe lower signal for longer diffusion times at high b. In light of these observations, we identify exchange as the mechanism that best explains these signal signatures in both low-b and high-b regime, and thereby propose NEXI as the minimal model for gray matter microstructure mapping. We finally highlight multi-b multi-t acquisition protocols as being best suited to estimate NEXI model parameters reliably. Using this approach, we estimate the inter-compartment water exchange time to be 15 - 60 ms in the rat cortex and hippocampus in vivo, which is of the same order or shorter than the diffusion time in typical diffusion MRI acquisitions. This suggests water exchange as an essential component for interpreting diffusion MRI measurements in gray matter.
在过去的二十年中,扩散的生物物理模型一直是研究的重点,这些模型基本上基于现在通常被称为具有各向异性非交换各向同性隔室和高斯扩散的“标准模型”(SM)。在这项工作中,我们专注于灰质中的扩散 MRI,这需要重新思考基本的微观结构建模块。特别是,对于灰质,需要考虑 SM 之外的至少三个贡献:跨细胞膜的水交换 - 在神经突和细胞外空间之间;神经元和神经胶质过程中的非高斯扩散 - 这是由于结构无序引起的;以及来自体的信号贡献。对于第一个贡献,我们提出了神经突交换成像(NEXI)作为扩散 SM 的扩展,它建立在各向异性的两个交换隔室的 Kärger 模型的基础上。我们使用在体内大鼠大脑中在多个扩散权重(b)和扩散时间(t)下采集的数据集,研究了 NEXI 与其他两个可能的贡献相比,在描述灰质扩散信号方面的适用性。对于扩散时间窗口 20-45 ms,我们的结果显示最小扩散时间依赖性和更明显的峰度随时间衰减,这与交换模型很好地吻合。此外,我们观察到在高 b 时,扩散时间越长,信号越低。鉴于这些观察结果,我们确定交换是最佳机制,可以解释这两个低 b 和高 b 区域中的信号特征,从而提出 NEXI 作为灰质微观结构映射的最小模型。我们最后强调了多 b 多 t 采集协议是可靠估计 NEXI 模型参数的最佳选择。使用这种方法,我们估计大鼠皮层和海马体中的隔室间水交换时间为 15-60 ms,这与典型扩散 MRI 采集中的扩散时间相同或更短。这表明水交换是解释灰质扩散 MRI 测量的重要组成部分。