Smalley Christopher J H, Hughes Colan E, Hildebrand Mariana, Aizen Ruth, Bauer Melanie, Yamano Akihito, Levy Davide, Mirsky Simcha K, Shaked Natan T, Young Mark T, Kolb Ute, Gazit Ehud, Kronik Leeor, Harris Kenneth D M
School of Chemistry, Cardiff University, Cardiff, Wales CF10 3AT, U.K.
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel.
Cryst Growth Des. 2024 Jul 18;24(15):6256-6266. doi: 10.1021/acs.cgd.4c00480. eCollection 2024 Aug 7.
Crystalline riboflavin (vitamin B) performs an important biological role as an optically functional material in the of certain animals, notably lemurs and cats. The is a reflecting layer behind the retina, which serves to enhance photon capture and vision in low-light settings. Motivated by the aim of rationalizing its biological role, and given that the structure of biogenic solid-state riboflavin remains unknown, we have used a range of experimental and computational techniques to determine the solid-state structure of synthetic riboflavin. Our multitechnique approach included microcrystal XRD, powder XRD, three-dimensional electron diffraction (3D-ED), high-resolution solid-state C NMR spectroscopy, and dispersion-augmented density functional theory (DFT-D) calculations. Although an independent report of the crystal structure of riboflavin was published recently, our structural investigations reported herein provide a different interpretation of the intermolecular hydrogen-bonding arrangement in this material, supported by all the experimental and computational approaches utilized in our study. We also discuss, more generally, potential pitfalls that may arise in applying DFT-D geometry optimization as a bridging step between structure solution and Rietveld refinement in the structure determination of hydrogen-bonded materials from powder XRD data. Finally, we report experimental and computational values for the refractive index of riboflavin, with implications for its optical function.
结晶核黄素(维生素B)在某些动物,尤其是狐猴和猫的眼睛中作为一种光学功能材料发挥着重要的生物学作用。眼睛中的反光层位于视网膜后面,用于在低光照环境下增强光子捕获和视觉能力。出于阐明其生物学作用的目的,并且鉴于生物源固态核黄素的结构仍然未知,我们使用了一系列实验和计算技术来确定合成核黄素的固态结构。我们的多技术方法包括微晶X射线衍射(XRD)、粉末XRD、三维电子衍射(3D-ED)、高分辨率固态碳核磁共振光谱以及色散增强密度泛函理论(DFT-D)计算。尽管最近有一份关于核黄素晶体结构的独立报告发表,但我们在此报告的结构研究对该材料中的分子间氢键排列提供了不同的解释,这得到了我们研究中使用的所有实验和计算方法的支持。我们还更广泛地讨论了在从粉末XRD数据确定氢键材料结构时,将DFT-D几何优化用作结构解析和Rietveld精修之间的桥梁步骤可能出现的潜在陷阱。最后,我们报告了核黄素折射率的实验和计算值,这对其光学功能具有重要意义。