Suppr超能文献

通过多基因评分的双重暴露相互作用凸显了不同社会群体在受益所需比例方面的差异。

Dual exposure-by-polygenic score interactions highlight disparities across social groups in the proportion needed to benefit.

作者信息

Nagpal Sini, Gibson Greg

机构信息

Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology Atlanta, GA 30302.

出版信息

medRxiv. 2024 Jul 30:2024.07.29.24311065. doi: 10.1101/2024.07.29.24311065.

Abstract

The transferability of polygenic scores across population groups is a major concern with respect to the equitable clinical implementation of genomic medicine. Since genetic associations are identified relative to the population mean, inevitably differences in disease or trait prevalence among social strata influence the relationship between PGS and risk. Here we quantify the magnitude of PGS-by-Exposure (PGSxE) interactions for seven human diseases (coronary artery disease, type 2 diabetes, obesity thresholded to body mass index and to waist-to-hip ratio, inflammatory bowel disease, chronic kidney disease, and asthma) and pairs of 75 exposures in the White-British subset of the UK Biobank study (n=408,801). Across 24,198 PGSxE models, 746 (3.1%) were significant by two criteria, at least three-fold more than expected by chance under each criterion. Predictive accuracy is significantly improved in the high-risk exposures and by including interaction terms with effects as large as those documented for low transferability of PGS across ancestries. The predominant mechanism for PGS×E interactions is shown to be amplification of genetic effects in the presence of adverse exposures such as low polyunsaturated fatty acids, mediators of obesity, and social determinants of ill health. We introduce the notion of the proportion needed to benefit (PNB) which is the cumulative number needed to treat across the range of the PGS and show that typically this is halved in the 70 to 80 percentile. These findings emphasize how individuals experiencing adverse exposures stand to preferentially benefit from interventions that may reduce risk, and highlight the need for more comprehensive sampling across socioeconomic groups in the performance of genome-wide association studies.

摘要

多基因分数在不同人群组之间的可转移性是基因组医学公平临床应用的一个主要问题。由于基因关联是相对于人群均值确定的,社会阶层之间疾病或性状患病率的差异不可避免地会影响多基因分数与风险之间的关系。在此,我们对英国生物银行研究中英国白人亚组(n = 408,801)的七种人类疾病(冠状动脉疾病、2型糖尿病、以体重指数和腰臀比为阈值的肥胖症、炎症性肠病、慢性肾病和哮喘)以及75对暴露因素的多基因分数与暴露因素(PGSxE)相互作用的程度进行了量化。在24,198个PGSxE模型中,有746个(3.1%)根据两个标准具有显著性,比每个标准下随机预期的至少多三倍。在高风险暴露因素中,以及通过纳入与跨祖先多基因分数低可转移性所记录的效应一样大的相互作用项,预测准确性得到了显著提高。PGS×E相互作用的主要机制被证明是在存在不利暴露因素(如低多不饱和脂肪酸、肥胖的介导因素和健康不良的社会决定因素)的情况下基因效应的放大。我们引入了受益所需比例(PNB)的概念,它是多基因分数范围内所需治疗的累积数量,并表明通常在第70至80百分位数时这一数量会减半。这些发现强调了经历不利暴露的个体如何可能从降低风险的干预措施中优先受益,并突出了在全基因组关联研究中对社会经济群体进行更全面抽样的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a48c/11312673/b0e44e638331/nihpp-2024.07.29.24311065v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验