Suppr超能文献

鉴定 YigL 为. 中的 PLP/PNP 磷酸酶。

Identification of YigL as a PLP/PNP phosphatase in .

机构信息

Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan.

出版信息

Appl Environ Microbiol. 2024 Sep 18;90(9):e0127024. doi: 10.1128/aem.01270-24. Epub 2024 Aug 12.

Abstract

In various organisms, the coenzyme form of vitamin B, pyridoxal phosphate (PLP), is synthesized from pyridoxine phosphate (PNP). Control of PNP levels is crucial for metabolic homeostasis because PNP has the potential to inhibit PLP-dependent enzymes and proteins. Although the only known pathway for PNP metabolism in involves oxidation by PNP oxidase, we detected a strong PNP phosphatase activity in cell lysate. To identify the unknown PNP phosphatase(s), we performed a multicopy suppressor screening using the strain, which displays PNP-dependent conditional lethality. The results showed that overexpression of the gene, encoding a putative sugar phosphatase, effectively alleviated the PNP toxicity. Biochemical analysis revealed that YigL has strong phosphatase activity against PNP. A mutant exhibited decreased PNP phosphatase activity, elevated intracellular PNP concentrations, and increased PNP sensitivity, highlighting the important role of YigL in PNP homeostasis. YigL also shows reactivity with PLP. The phosphatase activity of PLP in cell lysate was significantly reduced by mutation of and nearly abolished by additional mutation of , which encodes putative PLP phosphatase. These results underscore the important contribution of YigL, in combination with YbhA, as a primary enzyme in the dephosphorylation of both PNP and PLP in .IMPORTANCEPyridoxine phosphate (PNP) metabolism is critical for both vitamin B homeostasis and cellular metabolism. In , oxidation of PNP was the only known mechanism for controlling PNP levels. This study uncovered a novel phosphatase-mediated mechanism for PNP homeostasis. Multicopy suppressor screening, kinetic analysis of the enzyme, and knockout/overexpression studies identified YigL as a key PNP phosphatase that contributes to PNP homeostasis when facing elevated PNP concentrations in . This study also revealed a significant contribution of YigL, in combination with YbhA, to PLP metabolism, shedding light on the mechanisms of vitamin B regulation in bacteria.

摘要

在各种生物体中,辅酶形式的维生素 B,即吡哆醛磷酸(PLP),是由吡哆醇磷酸(PNP)合成的。PNP 水平的控制对于代谢稳态至关重要,因为 PNP 有可能抑制依赖 PLP 的酶和蛋白质。尽管目前已知在 中 PNP 代谢的唯一途径是由 PNP 氧化酶氧化,但我们在 细胞裂解物中检测到一种强烈的 PNP 磷酸酶活性。为了鉴定未知的 PNP 磷酸酶,我们使用了显示 PNP 依赖性条件致死性的 菌株进行了多拷贝抑制子筛选。结果表明,编码一种假定的糖磷酸酶的 基因的过表达有效地缓解了 PNP 的毒性。生化分析表明,YigL 对 PNP 具有很强的磷酸酶活性。 突变体表现出降低的 PNP 磷酸酶活性、升高的细胞内 PNP 浓度和增加的 PNP 敏感性,突出了 YigL 在 PNP 稳态中的重要作用。YigL 还与 PLP 反应。 细胞裂解物中 PLP 的磷酸酶活性因 突变而显著降低,因额外突变编码假定的 PLP 磷酸酶的 而几乎被废除。这些结果强调了 YigL 与 YbhA 相结合作为 中 PNP 和 PLP 去磷酸化的主要酶的重要贡献。

相似文献

1
Identification of YigL as a PLP/PNP phosphatase in .
Appl Environ Microbiol. 2024 Sep 18;90(9):e0127024. doi: 10.1128/aem.01270-24. Epub 2024 Aug 12.
2
3
Mechanism of Pyridoxine 5'-Phosphate Accumulation in Pyridoxal 5'-Phosphate-Binding Protein Deficiency.
J Bacteriol. 2022 Mar 15;204(3):e0052121. doi: 10.1128/JB.00521-21. Epub 2022 Jan 3.
4
Conserved Pyridoxal 5'-Phosphate-Binding Protein YggS Impacts Amino Acid Metabolism through Pyridoxine 5'-Phosphate in .
Appl Environ Microbiol. 2019 May 16;85(11). doi: 10.1128/AEM.00430-19. Print 2019 Jun 1.
8
Knowns and Unknowns of Vitamin B Metabolism in .
EcoSal Plus. 2021 Apr;9(2). doi: 10.1128/ecosalplus.ESP-0004-2021.
9
Pyridoxal Reductase, PdxI, Is Critical for Salvage of Pyridoxal in Escherichia coli.
J Bacteriol. 2020 May 27;202(12). doi: 10.1128/JB.00056-20.

本文引用的文献

2
Role of the conserved pyridoxal 5'-phosphate-binding protein YggS/PLPBP in vitamin B6 and amino acid homeostasis.
Biosci Biotechnol Biochem. 2022 Aug 24;86(9):1183-1191. doi: 10.1093/bbb/zbac113.
3
B vitamin supply in plants and humans: the importance of vitamer homeostasis.
Plant J. 2022 Aug;111(3):662-682. doi: 10.1111/tpj.15859. Epub 2022 Jun 27.
4
Mechanism of Pyridoxine 5'-Phosphate Accumulation in Pyridoxal 5'-Phosphate-Binding Protein Deficiency.
J Bacteriol. 2022 Mar 15;204(3):e0052121. doi: 10.1128/JB.00521-21. Epub 2022 Jan 3.
5
Loss of YggS (COG0325) impacts aspartate metabolism in Salmonella enterica.
Mol Microbiol. 2021 Oct;116(4):1232-1240. doi: 10.1111/mmi.14810. Epub 2021 Sep 22.
6
AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings.
J Chem Inf Model. 2021 Aug 23;61(8):3891-3898. doi: 10.1021/acs.jcim.1c00203. Epub 2021 Jul 19.
7
Knowns and Unknowns of Vitamin B Metabolism in .
EcoSal Plus. 2021 Apr;9(2). doi: 10.1128/ecosalplus.ESP-0004-2021.
8
UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100.
9
Pyridoxal Reductase, PdxI, Is Critical for Salvage of Pyridoxal in Escherichia coli.
J Bacteriol. 2020 May 27;202(12). doi: 10.1128/JB.00056-20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验