Department of Microbiology, The University of Georgia, Athens, Georgia, USA.
Department of Microbiology, The University of Georgia, Athens, Georgia, USA
Appl Environ Microbiol. 2021 Jan 15;87(3). doi: 10.1128/AEM.02300-20.
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B, essential for cellular function in all domains of life. In many organisms, such as serovar Typhimurium and , this cofactor can be synthesized or salvaged from B vitamers in the environment. Unexpectedly, strains blocked in PLP biosynthesis were able to use exogenous PLP and pyridoxine 5'-phosphate (PNP) as the source of this required cofactor, while strains of the same genotype could not. Transposon mutagenesis found that was essential for the salvage of PLP and PNP under the conditions tested. encodes a class A nonspecific acid phosphatase (EC 3.1.3.2) that is transcriptionally regulated by the PhoPQ two-component system. The periplasmic location of PhoN was essential for PLP and PNP salvage, and assays confirmed PhoN has phosphatase activity with PLP and PNP as substrates. The data suggest that PhoN dephosphorylates B vitamers, after which they enter the cytoplasm and are phosphorylated by kinases of the canonical PLP salvage pathway. The connection of with PhoPQ and the broad specificity of the gene product suggest is exploiting a moonlighting activity of PhoN for PLP salvage. Nutrient salvage is a strategy used by species across domains of life to conserve energy. Many organisms are unable to synthesize all required metabolites and must rely exclusively on salvage. Others supplement synthesis with the ability to salvage. This study identified an unexpected mechanism present in that allows salvage of phosphorylated B vitamers. and data herein determined that the periplasmic phosphatase PhoN can facilitate the salvage of PLP and PNP. We suggest a mechanistic working model of PhoN-dependent utilization of PLP and PNP and discuss the general role of promiscuous phosphatases and kinases in organismal fitness.
吡哆醛 5'-磷酸(PLP)是维生素 B 的生物活性形式,对所有生命领域的细胞功能都是必不可少的。在许多生物体中,例如血清型伤寒杆菌和 ,这种辅因子可以在环境中的 B 维生素中合成或回收。出乎意料的是,PLP 生物合成受阻的 菌株能够将外源性 PLP 和吡哆醇 5'-磷酸(PNP)用作必需辅因子的来源,而同一基因型的 菌株则不能。转座子诱变发现,在测试条件下, 是回收 PLP 和 PNP 的必需基因。 编码一种 A 类非特异性酸性磷酸酶(EC 3.1.3.2),受 PhoPQ 双组分系统转录调控。PhoN 的周质位置对于 PLP 和 PNP 的回收至关重要, 测定证实 PhoN 具有 PLP 和 PNP 作为底物的磷酸酶活性。数据表明,PhoN 使 B 维生素去磷酸化,然后它们进入细胞质并被经典 PLP 回收途径的激酶磷酸化。PhoN 与 PhoPQ 的连接以及基因产物的广泛特异性表明 PhoN 正在利用其兼职活性进行 PLP 回收。营养回收是生命领域中各种物种用来保存能量的策略。许多生物体无法合成所有必需的代谢物,因此必须完全依赖回收。其他生物体则通过回收能力来补充 合成。本研究确定了 中存在的一种意想不到的机制,该机制允许回收磷酸化的 B 维生素。 和 数据确定周质磷酸酶 PhoN 可以促进 PLP 和 PNP 的回收。我们提出了一个依赖 PhoN 的 PLP 和 PNP 利用的机制工作模型,并讨论了多功能磷酸酶和激酶在机体适应性中的一般作用。